
Internet Fundamentals &
Introduction to Web Technologies

Course: IT (044615)

Lecture: 6

Introduction to PHP

Dr. Ramez Hajislam

2

Origin and Uses of PHP

 Developed by Rasmus Lerdorf in 1994

 PHP is a server-side scripting language,
embedded in XHTML pages

 PHP has good support for form processing

 PHP can interface with a wide variety of
databases

 Open Source:
– http:/www.php.net

3

Overview of PHP

 When a PHP document is requested of a server, the

server will send the document first to a PHP processor

 The result of the processing is the response to the

request

 Two modes of operation

– Copy mode in which plain HTML is copied to the

output

– Interpret mode in which PHP code is interpreted and

the output from that code sent to output

– The client never sees PHP code, only the output

produced by the code

4

Overview of PHP

 PHP has typical scripting language characteristics

– Dynamic typing, untyped variables

– Associative arrays

– Pattern matching

– Extensive libraries:

 http://www.php.net

5

General Syntactic Characteristics

 PHP code is contained between the tags <?php and ?>

 Code can be included with the PHP include

Include(“table2.inc”);

 When a file is included, the PHP interpreter reverts to copy mode

– Thus, code in an include file must be in

<?php and ?> tags

 All variable names in PHP begin with $ and continue as usual for

variables

 Variable names are case sensitive

 However keywords and function names are not case sensitive

6

The reserved words of PHP

7

PHP Syntax

 One line comments can begin with # or // and continue

to the end of the line

 Multi-line comments can begin with /* and end with */

 PHP statements are terminated with semicolons

 Curly braces are used to create compound statements

 Variables cannot be defined in a compound statement

unless it is the body of a function

8

Primitives, Operations, Expressions

 Four scalar types:

– boolean, integer, double, string

 Two compound types:

– array, object

 Two special types:

– resource and NULL

9

Variables

 Variables are not declared except in order to specify

scope or lifetime

 A variable that has not been assigned a value is unbound

and has the value NULL

– NULL is coerced to 0 if a number is needed, to the

empty string if a string is needed

– Both of these coercions count as boolean FALSE

 IsSet, Unset functions:

– IsSet($fruit); return boolean value

– unset($fruit) Unassign the variable

10

Integer Type

 PHP distinguishes between integer and

floating point numeric types

 Integer is equivalent to long in C, that is,

usually 32 bits

11

Double Type

 Literal double type numeric values include a

period and/or the exponent sign: either e or E

 Double type values are stored internally as

double precision floating point values

12

String Type

 Characters in PHP are one byte.

 String literals are enclosed in single or double quotes

– Double quoted strings have escape sequences

interpreted and variables interpolated

– Single quoted strings have neither escape sequence

interpretation nor variable interpolation

– A literal $ sign in a double quoted string must be

escaped with a backslash, \

 Double-quoted strings can cover multiple lines, the

included end of line characters are part of the string

value

13

Boolean Type

 The boolean type has two values :TRUE and

FALSE

 Other type values are coerced as needed by

context, for example, in control expressions

– The integer value 0, the empty string and the literal

string “0” all count as false

– NULL counts as false

– The double value 0.0 counts as false. Beware,

however, that double calculations rarely result in the

exact value 0.0

14

Arithmetic Operators and Expressions

 PHP supports the usual operators supported by

the C/C++/Java family: +, -, *, /, %, ++, --

 Integer divided by integer results in integer if

there is no remainder but results in double if

there is a remainder

– 12/6 is 2

– 12/5 is 2.4

 A variety of numeric functions is available:

15

Some useful predefined functions

16

11.4 String Operations

 String catenation is indicated with a period (.)

 Characters are accessed in a string with a subscript

enclosed in curly braces

 $str = “apple”; (then $str{4}= “e”)

 Many useful string functions are provided

– strlen gives the length of a string

– strcmp compares two strings as strings

– Chop removes whitespace from the end of a string

17

Scalar Type Conversions

 Implicit type conversions as demanded by the context in which an

expression appears

– A string is converted to an integer if a numeric value is required

and the string has only a sign followed by digits

– A string is converted to a double if a numeric value is required

and the string is a valid double literal (including either a period or

e or E)

 Type conversions can be forced in three ways

– (int)$sum;

– intval($sum; We have also: doubleval, strval

– settype($x, “integer”)

 Type can be determined with the gettype function and with the

is_int function and similar functions for other types

18

Some commonly used string functions

19

Assignment Operators

 The assignment operators used in

C/C++/Java are supported in PHP: =, +=, -=

20

Output

 The print function is used to send data to output

– print takes string parameters, PHP coerces as necessary

 The C printf function is also available

– printf(“x = %5d is %s\n”, $x, $size);

Displays $x as an integer and $size as a string

21

Display of the output of today.php

22

Relational Operators

 PHP has the usual comparison operators: >, < <=, >=, == and !=

 PHP also has the identity operator ===

– This operator does not force coercion (same types and values).

 The regular comparisons will force conversion of values as needed

– Comparing a string with a number (other than with ===) will result

in the string converting to a number if it can be. Otherwise the

number is converted to a string

– If two strings are compared (other than with ===) and the strings

can both be converted to numeric values, the conversion will be

done and the converted values compared

– Use strcmp on the strings if the latter feature is a problem

23

Boolean Operators

 PHP supports &&, || and ! as in C/C++/Java

 The lower precedence version and and or

are provided

 The xor operator is also provided

24

Selection Statements

 PHP provides an I with almost the same syntax

as C/C++/Java

– The only difference is the elseif (note, not elsif as in

Perl)

 The switch statement is provided with syntax

and semantics similar to C/C++/Java

– The case expressions are coerced before comparing

with the control expression

– break is necessary to prevent execution from

flowing from one case to the next

25

Loop Statements

 PHP provides the while and for and do-while

as in JavaScript

 The for loop is illustrated in the example
powers.php

 This example also illustrates a number of

mathematical functions available in PHP

26

The output of powers.php

27

Arrays

 Arrays in PHP combine the characteristics of

regular arrays and hashes

– An array can have elements indexed numerically.

These are maintained in order

– An array, even the same array, can have

elements indexed by string. These are not

maintained in any particular order

 The elements of an array are, conceptually,

key/value pairs

28

Array Creation

 Two ways of creating an array

– Assigning a value to an element of an array

– Using the array function

 Create a numerically indexed array

– $A = array(23, „xiv‟, “bob”, 777);

 Create an array with string indexes

– $B = array(“x” => “xerxes”, “y” =>

“ytrbium”);

29

Functions for Dealing with Arrays

 The unset function can be used to remove an array or an element of
an array: unset($list[2])

 The array_keys function returns a list of the keys of an array

 The array_values returns a list of values in an array

 The array_key_exists function returns true if a given key is

actually present in a given array

 is_array determines if its argument is an array

 implode converts an array of strings to a single string, separating

the parts with a specified string

 explode converts a string into a list of strings by separating the

string at specified characters

30

Logical internal structure of arrays

31

Accessing Array Elements

 Array elements are accessed by using a subscript in square

brackets

 An array can be assigned to a list of variables

– list($x, $y, $z) = array(“xx”, “yy”, “zz”);

32

Sequential Access to Array Elements

 PHP maintains a marker in each array, called the current pointer

– Several functions in PHP manipulate the current pointer

– The pointer starts at the first element when the array is created

 The next function moves the pointer to the next element and
returns the value there

 The each function move the pointer to the next element and
returns the key/value pair at the previous position

– The key and value can be accessed using the keys “key” and
“value” on the key/value pair

 Both functions return false if no more elements are available

 prev moves the pointer back towards the beginning of the array

 reset moves the pointer to the beginning of the array

33

Arrays as Stacks

 PHP provides the array_push function that

appends its arguments to a given array

 The function array_pop removes the last

element of a given array and returns it

34

11.7 Iterating Through an Array

 The foreach statement has two forms for iterating through an array

foreach (array as scalar_variable) loop body

foreach (array as key => value) loop body

 The first version assigns each value in the array to the

scalar_variable in turn

 The second version assigns each key to key and the associated

value to value in turn

 In this example, each day and temperature is printed

$lows=array("Mon"=>23, "Tue" => 18, "Wed" => 27);

foreach ($lows as $day => $temp)

print("The low temperature on $day was $temp
");

35

Sorting Arrays

 The sort function sorts the values in an array and

makes a numerically subscripted array from the sorted

list

 The function asort sorts the values in an array but

keeps the original key/value association

 The function ksort is similar to asort but sorts by keys

 The functions rsort, arsort and krsort are

similar but sort in reverse order

 The example sorting.php illustrates the various sort

functions

36

The output of sorting.php

37

General Characteristics of Functions

 Function syntax

function name([parameters]) {

...

}

 The parameters are optional, but not the parentheses

 Function names are not case sensitive

 A return statement causes the function to immediately

terminate and return a value, if any, provided in the

return

 A function that reaches the end of the body without

executing a return, returns no value

38

Parameters

 A formal parameter, specified in a function declaration, is simply a

variable name

 If more actual parameters are supplied in a call than there are

formal parameters, the extra values are ignored

 If more formal parameters are specified than there are actual

parameters in a call then the extra formal parameters receive no

value

 PHP defaults to pass by value

– Putting an ampersand in front of a formal parameter specifies

that pass-by-reference

– An ampersand can also be appended to the actual parameter

(which must be a variable name)

39

The Scope of Variables

 A variable defined in a function is, by default,

local to the function

 A global variable of the same name is not

visible in the function

 Declaring a variable in a function with the

global declaration means that the functions

uses the global variable of that name

40

Lifetime of Variables

 The usual lifetime of a local variable is from

the time the function begins to execute to the

time the function returns

 Declaring a variable with the static keyword

means that the lifetime is from the first use of

the variable to the end of the execution of the

entire script

 In this way a function can retain some „history‟

41

Pattern Matching

 PHP provides both POSIX regular expressions and

Perl regular expressions

– These are generally the same but differ in certain

details

 The preg_match function matches a pattern, given as

a string, with a string

 The preg_split function splits a string into an array

of strings based on a pattern describing the separators

 The word_table.php example illustrates pattern

matching in PHP

42

Form Handling

 The values from forms can be accessed in

PHP using the $_POST and $_GET arrays

– Some web servers allow more direct access,

though this has security implications

 The files popcorn3.html and

popcorn3.php implement the popcorn

order form using PHP

– The printf function is used to get two decimal

places printed for currency values

43

The display of popcorn3.html

44

The output of popcorn3.php

45

Opening and Closing Files

 The PHP function fopen is used to create a file handle

for accessing a file given by name

 A second argument to fopen gives the mode of access

 The fopen function returns a file handle

 Every open file has a current pointer indicating a point

in the file

 Normally input and output operations occur at the

current pointer position

 The file_exists function tests if a file, given by

name, exists

 The function fclose closes a file handle

46

File use indicators

47

Reading from a File

 The fread function reads a given number of bytes from a file given

by a file handle

– The entire file can be read by using the filesize function to

determine the number of bytes in the file

 The file function returns an array of lines from a file named as a

parameter

– No explicit open and close are required for using this function, it

does not use a file handle parameter

 The file_get_contents method returns the content of a named

file as a single string

 The fgetc function returns a single character

 The feof function returns TRUE if the last character read was the

end of file marker, that is, the read was past the end of the file

48

Writing to a File

 If a file handle is open to for writing or
appending, then the fwrite function can be

used to write bytes to the file

 The file_put_contents function writes a

given string parameter to a named file, not a

file handle

49

Locking Files

 The flock function will locka a named file

 The function takes a second parameter

giving the mode of the lock

– 1 specifies others can read

– 2 specifies no other access is allowed

– 3 removes the lock

50

Cookies

 HTTP is a stateless protocol, that is, the server treats each request

as completely separate from any other

 This, however, makes some applications difficult

– A shopping cart is an object that must be maintained across

numerous requests and responses

 The mechanism of cookies can be used to help maintain state by

storing some information on the browser system

 A cookie is a key/value pair that is keyed to the domain of the server

– This key/value pair is sent along with any request made by the

browser of the same server

 A cookie has a lifetime which specifies a time at which the cookie is

deleted from the browser

51

Cookies and Security

 Cookies are only returned to the server that created them

 Cookies can be used to determine usage patterns that

might not otherwise be ascertained by a server

 Browsers generally allow users to limit how cookies are

used

– Browsers usually allow users to remove all cookies

currently stored by the browser

 Systems that depend on cookies will fail if the browser

refuses to store them

52

11.12 PHP Support for Cookies

 PHP provides the setcookie function to set a cookie

in a response

– The first parameter is the cookie‟s name

– The second, optional, parameter gives the cookie‟s

value

– The third, optional, parameter gives the expiration

 The cookie must be set before setting content type and

before providing any other output

 The $_COOKIES array provides access to cookies in

the HTTP request

53

Session Tracking

 Some applications need to keep track of a

session

 Sessions are represented internally in PHP

with a session id

– A session consists of key/value pairs

 A session can be initialized or retrieved by
using the session_start function

– This function retrieves $_SESSION, an array

containing the key/value pairs for each cookie in

the current request

