
Hashing

12.2

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well

as deletion.

 Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

12.3

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the

integer i.

 The hash function returns the sum of the binary representations of

the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch_name as key

(See figure in next slide.)

12.4

Example of Hash File Organization

Hash file organization

of account file, using

branch_name as key

(see previous slide for

details).

12.5

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

12.6

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

12.7

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained

together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

12.8

Hash Indices

 Hashing can be used not only for file organization, but also for index-

structure creation.

 A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

 However, we use the term hash index to refer to both secondary

index structures and hash organized files.

12.9

Example of Hash Index

12.10

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses. Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash

function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

12.11

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0 i 32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows
and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

12.12

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next

slide for details)

12.13

Use of Extendable Hash Structure

 Each bucket j stores a value ij

 All the entries that point to the same bucket have the same values on

the first ij bits.

 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)

12.14

Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)

 allocate a new bucket z, and set ij = iz = (ij + 1)

 Update the second half of the bucket address table entries originally
pointing to j, to point to z

 remove each record in bucket j and reinsert (in j or z)

 recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

 Else

 increment i and double the size of the bucket address table.

 replace each entry in the table by two entries that point to the
same bucket.

 recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

12.15

Deletion in Extendable Hash Structure

 To delete a key value,

 locate it in its bucket and remove it.

 The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).

 Coalescing of buckets can be done (can coalesce only with a

―buddy‖ bucket having same value of ij and same ij –1 prefix, if it is

present)

 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes

much smaller than the size of the table

12.16

Use of Extendable Hash Structure:

Example

Initial Hash structure, bucket size = 2

12.17

Example (Cont.)

 Hash structure after insertion of one Brighton and two Downtown

records

12.18

Example (Cont.)

Hash structure after insertion of Mianus record

12.19

Example (Cont.)

Hash structure after insertion of three Perryridge records

12.20

Example (Cont.)

 Hash structure after insertion of Redwood and Round Hill records

12.21

Example 2

12.22

Example2

12.23

Example2

12.24

Example 2

12.25

Example2

12.26

Example 2

12.27

12.28

Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree file organization to store bucket address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

12.29

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of

worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a specified

value of the key.

 If range queries are common, ordered indices are to be preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to

poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees

12.30

Bitmap Indices

 Bitmap indices are a special type of index designed for efficient

querying on multiple keys

 Records in a relation are assumed to be numbered sequentially from,

say, 0

 Given a number n it must be easy to retrieve record n

 Particularly easy if records are of fixed size

 Applicable on attributes that take on a relatively small number of

distinct values

 E.g. gender, country, state, …

 E.g. income-level (income broken up into a small number of levels

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

 A bitmap is simply an array of bits

12.31

Bitmap Indices (Cont.)

 In its simplest form a bitmap index on an attribute has a bitmap for

each value of the attribute

 Bitmap has as many bits as records

 In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise

12.32

Bitmap Indices (Cont.)

 Bitmap indices are useful for queries on multiple attributes

 not particularly useful for single attribute queries

 Queries are answered using bitmap operations

 Intersection (and)

 Union (or)

 Complementation (not)

 Each operation takes two bitmaps of the same size and applies the

operation on corresponding bits to get the result bitmap

 E.g. 100110 AND 110011 = 100010

100110 OR 110011 = 110111

NOT 100110 = 011001

 Males with income level L1: 10010 AND 10100 = 10000

 Can then retrieve required tuples.

 Counting number of matching tuples is even faster

12.33

Bitmap Indices (Cont.)

 Bitmap indices generally very small compared with relation size

 E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space

used by relation.

 If number of distinct attribute values is 8, bitmap is only 1% of

relation size

 Deletion needs to be handled properly

 Existence bitmap to note if there is a valid record at a record location

 Needed for complementation

 not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap

 Should keep bitmaps for all values, even null value

 To correctly handle SQL null semantics for NOT(A=v):

 intersect above result with (NOT bitmap-A-Null)

12.34

Efficient Implementation of Bitmap Operations

 Bitmaps are packed into words; a single word and (a basic CPU

instruction) computes and of 32 or 64 bits at once

 E.g. 1-million-bit maps can be and-ed with just 31,250 instruction

 Counting number of 1s can be done fast by a trick:

 Use each byte to index into a precomputed array of 256 elements

each storing the count of 1s in the binary representation

 Can use pairs of bytes to speed up further at a higher memory

cost

 Add up the retrieved counts

 Bitmaps can be used instead of Tuple-ID lists at leaf levels of

B+-trees, for values that have a large number of matching records

 Worthwhile if > 1/64 of the records have that value, assuming a

tuple-id is 64 bits

 Above technique merges benefits of bitmap and B+-tree indices

12.35

Index Definition in SQL

 Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.: create index b-index on branch(branch_name)

 Use create unique index to indirectly specify and enforce the

condition that the search key is a candidate key is a candidate key.

 Not really required if SQL unique integrity constraint is supported

 To drop an index

drop index <index-name>

 Most database systems allow specification of type of index, and

clustering.

End of Chapter

12.37

Partitioned Hashing

 Hash values are split into segments that depend on each

attribute of the search-key.

(A1, A2, . . . , An) for n attribute search-key

 Example: n = 2, for customer, search-key being

(customer-street, customer-city)

search-key value hash value

(Main, Harrison) 101 111

(Main, Brooklyn) 101 001

(Park, Palo Alto) 010 010

(Spring, Brooklyn) 001 001

(Alma, Palo Alto) 110 010

 To answer equality query on single attribute, need to look up

multiple buckets. Similar in effect to grid files.

12.38

Sequential File For account Records

12.39

Sample account File

12.40

Figure 12.2

12.41

Figure 12.14

12.42

Figure 12.25

12.43

Grid Files

 Structure used to speed the processing of general multiple search-

key queries involving one or more comparison operators.

 The grid file has a single grid array and one linear scale for each

search-key attribute. The grid array has number of dimensions

equal to number of search-key attributes.

 Multiple cells of grid array can point to same bucket

 To find the bucket for a search-key value, locate the row and column

of its cell using the linear scales and follow pointer

12.44

Example Grid File for account

12.45

Queries on a Grid File

 A grid file on two attributes A and B can handle queries of all following

forms with reasonable efficiency

 (a1 A a2)

 (b1 B b2)

 (a1 A a2 b1 B b2),.

 E.g., to answer (a1 A a2 b1 B b2), use linear scales to find

corresponding candidate grid array cells, and look up all the buckets

pointed to from those cells.

12.46

Grid Files (Cont.)

 During insertion, if a bucket becomes full, new bucket can be created

if more than one cell points to it.

 Idea similar to extendable hashing, but on multiple dimensions

 If only one cell points to it, either an overflow bucket must be

created or the grid size must be increased

 Linear scales must be chosen to uniformly distribute records across

cells.

 Otherwise there will be too many overflow buckets.

 Periodic re-organization to increase grid size will help.

 But reorganization can be very expensive.

 Space overhead of grid array can be high.

 R-trees (Chapter 23) are an alternative

