
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 18

Indexing Structures for Files

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 2

Chapter Outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Indexes as Access Paths

 A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

 The index is usually specified on one field of the
file (although it could be specified on several
fields)

 One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

 The index is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 4

Indexes as Access Paths (contd.)

 The index file usually occupies considerably less disk

blocks than the data file because its entries are much

smaller

 A binary search on the index yields a pointer to the file

record

 Indexes can also be characterized as dense or sparse

 A dense index has an index entry for every search key

value (and hence every record) in the data file.

 A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 5

Indexes as Access Paths (contd.)

 Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)

 Suppose that:
 record size R=150 bytes block size B=512 bytes r=30000 records

 Then, we get:
 blocking factor Bfr= B div R= 512 div 150= 3 records/block

 number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

 For an index on the SSN field, assume the field size VSSN=9 bytes, assume
the record pointer size PR=7 bytes. Then:
 index entry size RI=(VSSN+ PR)=(9+7)=16 bytes

 index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block

 number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks

 binary search needs log2bI= log2938= 10 block accesses

 This is compared to an average linear search cost of:
 (b/2)= 30000/2= 15000 block accesses

 If the file records are ordered, the binary search cost would be:
 log2b= log230000= 15 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 6

Types of Single-Level Indexes

 Primary Index

 Defined on an ordered data file

 The data file is ordered on a key field

 Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

 A similar scheme can use the last record in a block.

 A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 7

Primary index on the ordering key field

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

Types of Single-Level Indexes

 Clustering Index

 Defined on an ordered data file

 The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

 Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

 It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 9

A Clustering Index Example

 FIGURE 14.2
A clustering index
on the
DEPTNUMBER
ordering non-key
field of an
EMPLOYEE file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 10

Another Clustering Index Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 11

Types of Single-Level Indexes

 Secondary Index
 A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

 The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

 The index is an ordered file with two fields.
 The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.

 The second field is either a block pointer or a record pointer.

 There can be many secondary indexes (and hence, indexing
fields) for the same file.

 Includes one entry for each record in the data file; hence, it
is a dense index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 12

Example of a Dense Secondary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 13

An Example of a Secondary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 14

Properties of Index Types

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 15

Multi-Level Indexes

 Because a single-level index is an ordered file, we can

create a primary index to the index itself;

 In this case, the original index file is called the first-level

index and the index to the index is called the second-level

index.

 We can repeat the process, creating a third, fourth, ..., top

level until all entries of the top level fit in one disk block

 A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the

first-level index consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 16

A Two-level Primary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 17

Multi-Level Indexes

 Such a multi-level index is a form of search tree

 However, insertion and deletion of new index

entries is a severe problem because every level of

the index is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees

 Most multi-level indexes use B+-tree data structures

because of the insertion and deletion problem

 This leaves space in each tree node (disk block) to allow for

new index entries

 These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

 In B+-Tree data structures, each node corresponds to a

disk block

 Each node is kept between half-full and completely full

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees (contd.)

 An insertion into a node that is not full is quite
efficient

 If a node is full the insertion causes a split into two
nodes

 Splitting may propagate to other tree levels

 A deletion is quite efficient if a node does not
become less than half full

 If a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Trees Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the tree), it

can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Tree Node Structure

 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with

search-key value Ki, or to a bucket of pointers to file records, each

record having search-key value Ki. Only need bucket structure if

search-key does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less

than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf

nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are less

than K1

 For 2 i n – 1, all the search-keys in the subtree to which

Pi points have values greater than or equal to Ki–1 and less

than Ki

 All the search-keys in the subtree to which Pn points have

values greater than or equal to Kn–1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of a B+-tree

B+-tree for account file (n = 3)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B+-tree

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Observations about B+-trees

 Since the inter-node connections are done by pointers, ―logically‖

close blocks need not be ―physically‖ close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is no

more than logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled efficiently, as

the index can be restructured in logarithmic time (as we shall see).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.

4. Else no record with search-key value k exists.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree

is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a

lookup.

 Contrast this with a balanced binary tree with 1 million search

key values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access may

need a disk I/O, costing around 20 milliseconds

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if necessary)

2. If there is room in the leaf node, insert (key-value, pointer) pair in

the leaf node

3. Otherwise, split the node (along with the new (key-value, pointer)

entry) as discussed in the next slide.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion

(Cont.)
 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one being

inserted) in sorted order. Place the first n/2 in the original node,

and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already

full internal node N

 Copy N to an in-memory area M with space for n+1 pointers

and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated

node N’

 Insert (K n/2,N’) into parent N

Downtown Mianus Perryridge Downtown

Mianus

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file

and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there is

no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the

entries in the node and a sibling fit into a single node, then

merge siblings:

 Insert all the search-key values in the two nodes into a single

node (the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then

redistribute pointers:

 Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

 Update the corresponding search-key value in the parent of the

node.

 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion

 Deleting ―Downtown‖ causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from result of

previous example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion (Cont.)

 Leaf with ―Perryridge‖ becomes underfull (actually empty, in this
special case) and merged with its sibling.

 As a result ―Perryridge‖ node’s parent became underfull, and was
merged with its sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, and borrowed a

pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 40

Summary

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes on Multiple Keys

