
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 18

Indexing Structures for Files

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 2

Chapter Outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Indexes as Access Paths

 A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

 The index is usually specified on one field of the
file (although it could be specified on several
fields)

 One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

 The index is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 4

Indexes as Access Paths (contd.)

 The index file usually occupies considerably less disk

blocks than the data file because its entries are much

smaller

 A binary search on the index yields a pointer to the file

record

 Indexes can also be characterized as dense or sparse

 A dense index has an index entry for every search key

value (and hence every record) in the data file.

 A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 5

Indexes as Access Paths (contd.)

 Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)

 Suppose that:
 record size R=150 bytes block size B=512 bytes r=30000 records

 Then, we get:
 blocking factor Bfr= B div R= 512 div 150= 3 records/block

 number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

 For an index on the SSN field, assume the field size VSSN=9 bytes, assume
the record pointer size PR=7 bytes. Then:
 index entry size RI=(VSSN+ PR)=(9+7)=16 bytes

 index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block

 number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks

 binary search needs log2bI= log2938= 10 block accesses

 This is compared to an average linear search cost of:
 (b/2)= 30000/2= 15000 block accesses

 If the file records are ordered, the binary search cost would be:
 log2b= log230000= 15 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 6

Types of Single-Level Indexes

 Primary Index

 Defined on an ordered data file

 The data file is ordered on a key field

 Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

 A similar scheme can use the last record in a block.

 A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 7

Primary index on the ordering key field

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

Types of Single-Level Indexes

 Clustering Index

 Defined on an ordered data file

 The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

 Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

 It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 9

A Clustering Index Example

 FIGURE 14.2
A clustering index
on the
DEPTNUMBER
ordering non-key
field of an
EMPLOYEE file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 10

Another Clustering Index Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 11

Types of Single-Level Indexes

 Secondary Index
 A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

 The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

 The index is an ordered file with two fields.
 The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.

 The second field is either a block pointer or a record pointer.

 There can be many secondary indexes (and hence, indexing
fields) for the same file.

 Includes one entry for each record in the data file; hence, it
is a dense index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 12

Example of a Dense Secondary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 13

An Example of a Secondary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 14

Properties of Index Types

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 15

Multi-Level Indexes

 Because a single-level index is an ordered file, we can

create a primary index to the index itself;

 In this case, the original index file is called the first-level

index and the index to the index is called the second-level

index.

 We can repeat the process, creating a third, fourth, ..., top

level until all entries of the top level fit in one disk block

 A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the

first-level index consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 16

A Two-level Primary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 17

Multi-Level Indexes

 Such a multi-level index is a form of search tree

 However, insertion and deletion of new index

entries is a severe problem because every level of

the index is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees

 Most multi-level indexes use B+-tree data structures

because of the insertion and deletion problem

 This leaves space in each tree node (disk block) to allow for

new index entries

 These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

 In B+-Tree data structures, each node corresponds to a

disk block

 Each node is kept between half-full and completely full

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees (contd.)

 An insertion into a node that is not full is quite
efficient

 If a node is full the insertion causes a split into two
nodes

 Splitting may propagate to other tree levels

 A deletion is quite efficient if a node does not
become less than half full

 If a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Trees Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the tree), it

can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B+-Tree Node Structure

 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with

search-key value Ki, or to a bucket of pointers to file records, each

record having search-key value Ki. Only need bucket structure if

search-key does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less

than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf

nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are less

than K1

 For 2  i  n – 1, all the search-keys in the subtree to which

Pi points have values greater than or equal to Ki–1 and less

than Ki

 All the search-keys in the subtree to which Pn points have

values greater than or equal to Kn–1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of a B+-tree

B+-tree for account file (n = 3)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B+-tree

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Observations about B+-trees

 Since the inter-node connections are done by pointers, ―logically‖

close blocks need not be ―physically‖ close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is no

more than  logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled efficiently, as

the index can be restructured in logarithmic time (as we shall see).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k  Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.

4. Else no record with search-key value k exists.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree

is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a

lookup.

 Contrast this with a balanced binary tree with 1 million search

key values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access may

need a disk I/O, costing around 20 milliseconds

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if necessary)

2. If there is room in the leaf node, insert (key-value, pointer) pair in

the leaf node

3. Otherwise, split the node (along with the new (key-value, pointer)

entry) as discussed in the next slide.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion

(Cont.)
 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one being

inserted) in sorted order. Place the first n/2 in the original node,

and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already

full internal node N

 Copy N to an in-memory area M with space for n+1 pointers

and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated

node N’

 Insert (K n/2,N’) into parent N

Downtown Mianus Perryridge Downtown

Mianus

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file

and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there is

no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the

entries in the node and a sibling fit into a single node, then

merge siblings:

 Insert all the search-key values in the two nodes into a single

node (the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then

redistribute pointers:

 Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

 Update the corresponding search-key value in the parent of the

node.

 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion

 Deleting ―Downtown‖ causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from result of

previous example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B+-Tree Deletion (Cont.)

 Leaf with ―Perryridge‖ becomes underfull (actually empty, in this
special case) and merged with its sibling.

 As a result ―Perryridge‖ node’s parent became underfull, and was
merged with its sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, and borrowed a

pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 40

Summary

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes on Multiple Keys

