Chapter 18

Fundamentals of

Elmasri * Navathe

PEARSON

e

Addis
Wesley

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

= Types of Single-level Ordered Indexes
= Primary Indexes
= Clustering Indexes
= Secondary Indexes

s Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 2

Indexes as Access Paths

= A single-level index is an auxiliary file that makes
It more efficient to search for a record in the data
file.

= The index Is usually specified on one field of the

file (although it could be specified on several
fields)

x One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

= The index Is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Indexes as Access Paths (contd.)

= The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller

= A binary search on the index yields a pointer to the file
record
= Indexes can also be characterized as dense or sparse

= Adense index has an index entry for every search key
value (and hence every record) in the data file.

= Asparse (or nondense) index, on the other hand, has
Index entries for only some of the search values

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 4

Indexes as Access Paths (contd.)

= Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)
= Suppose that:
= record size R=150 bytes block size B=512 bytes r=30000 records
= Then, we get:
= Dblocking factor Bfr= B div R= 512 div 150= 3 records/block
= number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks
= For anindex on the SSN field, assume the field size V=9 bytes, assume
the record pointer size P,=7 bytes. Then:
= index entry size R=(Vssnt Pr)=(9+7)=16 bytes
= index blocking factor Bfr= B div R= 512 div 16= 32 entries/block
= number of index blocks b= (r/ Bfr)= (30000/32)= 938 blocks
= binary search needs log,bl=10g,938= 10 block accesses
= Thisis compared to an average linear search cost of:
= (b/2)=30000/2= 15000 block accesses
= Ifthe file records are ordered, the binary search cost would be:
» log,b= 109,30000= 15 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 5

Types of Single-Level Indexes

= Primary Index
= Defined on an ordered data file
= The data file is ordered on a key field

= Includes one index entry for each block in the data file; the
iIndex entry has the key field value for the first record in the
block, which is called the block anchor

= A similar scheme can use the last record in a block.

= A primary index is a nondense (sparse) index, since it
Includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 6

Primary index on the ordering key field

Figure 14.1 Data file
Primary index on the ordering key field of (Primary
the file shown in Figure 13.7. key field)
Name Ssn |Birth_date | Job | Salary | Sex
—————— | Aaron, Ed
Abbot, Diane

Acosta, Marc | | | | |

—— | Adams, John

Adams, Robin
Akers, Jan | [[] |
Index file
(<K()), P()> entries) —® | Alexander, Ed
Alfred, Bob
Block anchor
primary key Block Allen, Sam [[[] |
value pointer
Aaron, Ed Allen, Troy
Adams, John Anders, Keith
Alexander, Ed
Allen, Troy - Anderson, Rob | | ‘ | |
Anderson, Zach '7—|_’
Arnold, Mack . Anderson, Zach
: Angel, Joe
Archer, Sue | | ‘ | |
. — | Arnold, Mack
: Arnold, Steven
Atkins, Timothy | | [|
— | Wong, James
Wood, Donald
Wong, James .

Wright, Pam *—— Woods, Manny | | | | |
—I—. Wright, Pam

Wyatt, Charles

Zimmer, Byron | I | | I

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 7

Types of Single-Level Indexes

= Clustering Index
= Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary
Index, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the field,;
the index entry points to the first data block that contains
records with that field value.

= It is another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
iIndex.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

A Clustering Index Example

DATAFILE
s FIGURE 14.2 (CLUSTERNG
A Clusterlng |ndex DEPTNUI:ABEH NAME SSN JOB BIRTHDATE SALARY
on the 1
DEPTNUMBER ;
ordering non-key B 2
. (<K(i), P(i)> entries)
field of an .
EMPLOYEE file. BT et j
l 7 :
i = :
5 L -]
‘ - :
8 = 5
6
6
6
6
‘

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 9

Another Clustering Index Exam

Figure 14.3
Clustering index with a
separate block cluster
for each group of

(Clustering
field)

Data riie

Dept_number

Name | Ssn_| Job

Birth_date

Salary

—
_l NULL pointer

!
s

NULL pointer

.|
1 NULL pointer

ol
L NULL pointer

P
L NULL pointer

L NULL pointer

e 1
records that share the 1
same value for the]
clustering field.
Block pointer
T R 2
2
Block pointer
—— 3
3
3
3
Index file Blook oo
(<K(i), PUi)> entries) ock pointer =
Lo]
Clustering Block Block pointer
field value pointer
1 -~—r 4
2 4
3
4 -] Block pointer
5]
6 \—- 5
8 5
5
5
Block pointer
e [
6
5]
6
Block pointer e———
J
e 1
Block pointer —
8
8
8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Block pointer

1 NULL pointer R
N Slide 14- 10

Types of Single-Level Indexes

= Secondary Index

= A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a hon-key
with duplicate values.

= Theindexis an ordered file with two fields.

» The first field is of the same data type as some non-ordering
field of the data file that is an indexing field.

»« The second field is either a block pointer or a record pointer.

» There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Includes one entry for each record in the data file; hence, it
Is a dense Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 11

Example of a Dense Secondary Index

Figure 14.4
A dense secondary index (with
block pointers) on a nonordering
key field of a file.

Index file S
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
] Index Block e ——— 9
field value pointer I
1 s = 5
- 13
- : 8
e 1| :
g | T
7 . = 3
5 - 17
i L= 21
9 : = 11
10 16
11 —— o
12 o
13 — - 24
14 hal| > 10
15 . 20
16 Ll 1
[
17 ‘ = 4
18 ! - 23
19 - 18
20 . 14
21 .
22 '—'I : 12
23 I : 7
24 . 19
22

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 12

An Example of a Secondary Index

Data file
(Indexing field)
Dept_number | Name | Ssn | Job |Birth_date | Salary
mmmm— 3
Blocks of - 5
record
{ i 1
pointers
- 6
i
=4 s]
: - 2
J - 3
—
i . - 4
Index file - 8
(<K(i), P(i)> entries)
Field Block i T - 6
value pointer _ 8
1 o] ! -~
7 - 2
2 e ! — 1
3 . o o]
: .__,-— ‘
5] : - 6
6 '_—L i1 g .
8 -~— i ‘ 2
— - 5
—
[
- 5
Ir : > 1
‘ l - 6
T|Tlv— S 3
- 6
e e 3
8
————— - 3

Figure 14.5
A secondary index (with record pointers) on a nonkey field implemented using one level
of indirection so that index entries are of fixed length and have unique field values.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 13

Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX)
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense

“Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
“For options 2 and 3.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 14

Multi-Level Indexes

m Because a single-level index is an ordered file, we can
create a primary index to the index itself;
= In this case, the original index file is called the first-level

Index and the index to the index is called the second-level
Index.

= We can repeat the process, creating a third, fourth, ..., top
level until all entries of the top level fit in one disk block

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 15

A Two-level Primary Index

Two-level index Data file
First (base) Primary
level key field
—-yo 1 2
8 — 5
15 ——
24 o 8
12
15
21
24
Second (top) 29
level
2 —|—> 35 — 35
35 -— 39 — 36
55 44
85 51 — 80
41
44
46
51
52
—»| 55 — 55
63 o— 58
71 -——|_'
80 - 68
66
71
78
80
[85 | '_—|" 82
85
89
Figure 14.6

A two-level primary index resembling ISAM (Index Sequential Access Method) organization.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 16

Multi-Level Indexes

x Such a multi-level index I1s a form of search tree

= However, insertion and deletion of new index
entries Is a severe problem because every level of
the index Is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 17

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

s Most multi-level indexes use B+-tree data structures
because of the insertion and deletion problem

= This leaves space in each tree node (disk block) to allow for
new index entries

s | hese data structures are variations of search trees that
allow efficient insertion and deletion of new search values.

= In B+-Tree data structures, each node corresponds to a
disk block

s Each node is kept between half-full and completely full

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (contd.)

= An insertion into a node that is not full is quite
efficient

= If a node is full the insertion causes a split into two
nodes

s Splitting may propagate to other tree levels

= A deletion is quite efficient if a node does not
pecome less than half full

s If a deletion causes a node to become less than
nalf full, it must be merged with neighboring
nodes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

B+-Trees Example

MThtozant]] T Pootnode

[[Einstein],| Gold | | [srinivasan] | B ~ Internal nodes

Leaf nodes—

Uape 0! M NN R, NI e e 3

Brandt] [Califion] | Crick| -] [Einstein] [E1 Said| | [I-[] Gold [] Katz || Kim[{>{ Mozart]] Singh || I-{[srinivasan[[wu] || =

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000 |
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 60000

76543 | Singh Finance 80000

76766 | Crick Biology 72000

83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

Y YYYYY YYYYYY \\

Figure 11.9 B™-tree for instructor file (n = 4).

B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between [n/2 | and n children.
A leaf node has between [(n—1)/2 | and n—1 values
Special cases:

= If the root is not a leaf, it has at least 2 children.

= If the root is a leaf (that is, there are no other nodes in the tree), it
can have between 0 and (n—1) values.

PN

Mianus Redwood

Perryridge

l N

Perryridge T |Redwood| |Round Hill

Y

Brighton| |Downtown|— Mianus

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

B*-Tree Node Structure

= Typical node

» K are the search-key values

» P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

s The search-keys in a node are ordered
Ki<Ky<Kg<. . <Ky

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Leaf Nodes in B*-Trees

Properties of a leaf node:
= Fori=1,2, ..., n-1, pointer P, either points to a file record with
search-key value K,, or to a bucket of pointers to file records, each
record having search-key value K.. Only need bucket structure if
search-key does not form a primary key.

s IfL;, L are leaf nodes and i <, Lj's search-key values are less
than L;'s search-key values

= P, points to next leaf node in search-key order

Brighton Downtown

leaf node

Brighton

Downtown

Downtown

account file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Non-Leaf Nodes in B*-Trees

= Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:

= All the search-keys in the subtree to which P, points are less
than K,

= For2<i<n-1, all the search-keys in the subtree to which
P, points have values greater than or equal to K,_; and less
than K,

= All the search-keys in the subtree to which P, points have
values greater than or equal to K,

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of a B*-tree

Perryridge
1 1
Mianus Redwood
1 1]
Brighton Downtown F] Mianus 7 Perryridge . Redwood| |Round Hill

B*-tree for account file (n = 3)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B*-tree

Brighton | [Downtown Mianus - Perryridgel |Redwood| |Round Hill M

B*-tree for account file (n = 5)

s Leaf nodes must have between 2 and 4 values
((n-1)/21and n -1, with n = 5).

s Non-leaf nodes other than root must have between 3
and 5 children ((n/2]and n with n =5).

s Root must have at least 2 children.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Observations about B*-trees

= Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.

= The non-leaf levels of the B*-tree form a hierarchy of sparse indices.
= The B*-tree contains a relatively small number of levels

= Level below root has at least 2* [n/2 | values

= Next level has at least 2*[n/2]*[n/2] values

= .. EfC.

= If there are K search-key values in the file, the tree height is no
more than | logr,,1(K) |

= thus searches can be conducted efficiently.

= Insertions and deletions to the main file can be handled efficiently, as
the index can be restructured in logarithmic time (as we shall see).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B*-Trees

= Find all records with a search-key value of k.
1. N=root
2. Repeat
.. Examine N for the smallest search-key value > k.
2. If such a value exists, assume it is K. Then set N = P,
3. Otherwise k> K, _;. SetN =P,
Until N is a leaf node
5. If for some i, key K, = k follow pointer P, to the desired record or bucket.
2. Else no record with search-key value k exists.

‘ |Perryridge| | | |
1 1

Mianus Redwood
[1

l

Brighton| [Downtown Mianus Redwood| |Round Hill

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Queries on B+ Trees (Cont.)

m If there are K search-key values in the file, the height of the tree
IS no more than rlogrnm(Kﬂ.

= A node is generally the same size as a disk block, typically 4
kilobytes

= and n s typically around 100 (40 bytes per index entry).
= With 1 million search key values and n = 100

= at most log,(1,000,000) = 4 nodes are accessed in a
lookup.
m Contrast this with a balanced binary tree with 1 million search
key values — around 20 nodes are accessed in a lookup

= above difference is significant since every node access may
need a disk I/O, costing around 20 milliseconds

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B*-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node
1. Add record to the file
3. If the search-key value is not present, then
1. add the record to the main file (and create a bucket if necessary)

2. If there is room in the leaf node, insert (key-value, pointer) pair in
the leaf node

3. Otherwise, split the node (along with the new (key-value, pointer)
entry) as discussed in the next slide.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B*-Trees: Insertion
(Cont.)

m Splitting a leaf node:

= take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first[n/2]in the original node,
and the rest in a new node.

= letthe new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

= If the parent s full, split it and propagate the split further up.
= Splitting of nodes proceeds upwards till a node that is not full is found.

= Inthe worst case the root node may be split increasing the height
of the tree by 1.

Brighton| [Clearview Downtown
]]]

P |

Result of splitting node containing Brighton and Downtown on inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B*-Trees: Insertion (Cont.)

4 Perryridge |
/ \
Mianus | : Redwood .
Brighton| |Downtown|-» | Mianus T |Perryridge T |[Redwood| |Round Hill
| Perryridge |
/ \
Downtown Mianus | Redwood
Brighton | | Clearview Downtown T | Mianus 11 |Perryridge T Re;wood |Round1—]j]l

B*-Tree before and after insertion of “Clearview”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Insertion in B*-Trees (Cont.)

s Splitting a non-leaf node: when inserting (k,p) into an already
full internal node N

= Copy N to an in-memory area M with space for n+1 pointers
and n keys

= Insert (k,p) into M
= Copy Py,Ky, ..o Ky21.1:P 21 from M back into node N

= Copy Proos Kot KnPrea from M into newly allocated
node N’

= Insert (Ky,1,N’) into parent N

F
. —

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B*-Trees: Deletion

s Find the record to be deleted, and remove it from the main file
and from the bucket (if present)

= Remove (search-key value, pointer) from the leaf node if there is
no bucket or if the bucket has become empty

= [f the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings:
= Insert all the search-key values in the two nodes into a single
node (the one on the left), and delete the other node.

« Delete the pair (K_;, P;), where P, is the pointer to the deleted
node, from its parent, recursively using the above procedure.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Updates on B*-Trees: Deletion

s Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then
redistribute pointers:

= Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.

= Update the corresponding search-key value in the parent of the
node.

= The node deletions may cascade upwards till a node which has [n/2 |
or more pointers is found.

= If the root node has only one pointer after deletion, it is deleted and
the sole child becomes the root.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B*-Tree Deletion

Before and after deleting “Downtown”

| Perryridge |

/ \

Downtown Mianus | Redwood
Brighton | | Clearview Downtown T | Mianus 11 [Perryridge T Re;wood Round Hill
Perryridge N

/ \A

| Mianus Redvx ood

Brighton | | Clearview |43 | Mianus T |Perryridge Redwood | |Round Hill

s Deleting “Downtown” causes merging of under-full leaves
= l|eaf node can become empty only for n=3!

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B*-Tree Deletion (Cont.)

Perrvrldbe
Mianus | Redv« ocnd
Brighton | | Clearview [| Mianus 1> |Perryridge Redwood | |Round Hill H

Mianus | |Perryridge
] . N

o)

Brighton| | Clearview » | Mianus T | Redwood| [Round Hill

Before and After deletion of “Perryridge” from result of
previous example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of B*-Tree Deletion (Cont.)

Perrvrlds,e
Mianus Redm md
1 |
Brighton | | Clearview |4 Mianus Perryridge Redwood | |Round Hill

» Leaf with “Perryridge” becomes underfull (actually empty, in this
special case) and merged with its sibling.

s As aresult “Perryridge” node’s parent became underfull, and was
merged with its sibling

= Value separating two nodes (at parent) moves into merged node
= Entry deleted from parent
= Root node then has only one child, and is deleted

Mianus | [Perryridge
[1]

N

Brighton| | Clearview |- Mianus T |Redwood| |Round Hill

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of B*-tree Deletion (Cont.)

Before and after deletion of “Perryridge” from earlier example

Perryridge
1 1
Downtown Mianus Redwood
]
Brighton | [Clearview [Downtown| »-| | Mianus > |Perryridge »1 |Redwood| [Round Hill

Mianus

e T\

| |D0wntown Redwood
1 1
: Downtownl - Mianus —+—»] |Redwood| |Round Hill

s Parent of leaf containing Perryridge became underfull, and borrowed a
pointer from its left sibling

m Search-key value in the parent’s parent changes as a result

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Summary

m Types of Single-level Ordered Indexes
= Primary Indexes
s Clustering Indexes
= Secondary Indexes

= Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 40

