
Internet Fundamentals &
Introduction to Web Technologies

Course: IT (044615)

Lecture: 9

XML

Dr. Ramez Hajislam

2

Introduction

 eXtensible Markup Language

 Developed from SGML

 A meta-markup language

 Deficiencies of HTML and SGML

– Lax syntactical rules

– Many complex features that are rarely used

 HTML is a markup language, XML is used to define markup

languages

 Markup languages defined in XML are known as applications

 XML can be written by hand or generated by computer

– Useful for data exchange

3

The Syntax of XML

 Levels of syntax

– Well-formed documents conform to basic XML rules

– Valid documents are well-formed and also conform

to a schema which defines details of the allowed

content

4

The Syntax of XML

 Well-formed XML documents

– All begin tags have a matching end tag

 Empty tags

– If a begin tag is inside an element, the matching end tag is also

– There is one root tag that contains all the other tags in a

document

– Attributes must have a value assigned, the value must be quoted

– The characters <, >, & can only appear with their special meaning

– http://www.w3.org/TR/2006/REC-xml-20060816/#sec-well-formed

is the official definition

 Validity is tested against a schema, discussed later

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/

5

XML Document Structure

 Auxiliary files

– Schema file

 DTD or XML Schema or one of several other

– Style file

 Cascading Style Sheets

 XSLT

 Breaking file up

– Document entities

– Entity syntax

 Character data

– <![CDATA …..]]>

6

Document Type Definitions

 A set of declarations

 Define tags, attributes, entities

 Specify the order and nesting of tags

 Specify which attributes can be used with

which tags

 General syntax

– <!keyword …. >

– Note, not XML!

7

Declaring Elements

 General syntax

– <!ELEMENT element-name content-description)>

– Content description specifies what tags may appear inside the

named element and whether there may be any plain text in the

content

 Sequence of tags

 Alternate tags

 Multiplicity

– +

– *

– ?

 #PCDATA

8

Declaring Attributes

 General syntax

– <!ATTLIST element-name

(attribute-name attribute-type default-value?)+ >

 Default values

– A value

– #FIXED value

– #REQUIRED

– #IMPLIED (default, if not specified)

9

Declaring Entities

 General Syntax

– <!ENTITY [%] entity-name “entity-value”>

– With %: a parameter entity

– Without %: a general entity

 Parameter entities may only be referenced in the

DTD

 Remote form

– <!ENTITY entity-name SYSTEM “file-location”>

– The replacement for the entity is the content of the file

10

Sample DTD

11

Internal and External DTDs

 A document type declaration can either contain declarations directly

or can refer to another file

 Internal

– <!DOCTYPE root-element [

declarations

]>

 External file

– <!DOCTYPE root-name SYSTEM “file-name”>

 A public identifier can also be specified, that would be mapped to a

system identifier by the processing system

12

Namespaces

 “XML namespaces provide a simple method for qualifying element and

attribute names used in Extensible Markup Language documents by

associating them with namespaces identified by URI references.”

– From the specification

http://www.w3.org/TR/2006/REC-xml-names-20060816/

 A namespace can be declared for an element and its descendants by

– <element xmlns[:prefix]=“URI”>

– The prefix is used to qualify elements that belong to the

namespace

– Multiple namespaces can be used in a single document

– Default namespace

 DTDs do not support namespaces very well

http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/

13

XML Schemas

 Schema is a generic term for any description

of an XML content model

 DTDs have several deficits

– They do not use XML syntax

– They do not support namespaces

– Data types cannot be strictly specified

 Example date vs. string

14

Schema Fundamentals

 Documents that conform to a schema‟s rules

are considered instances of that schema

 Schema purposes

– Structure of instances

– Data types of elements and attributes

 XML Schemas support namespaces

– The XML Schema language itself is a set of XML

tags

– The application being described is another set of

tags

15

Defining a Schema

 The root of an XML Schema document is the schema tag

 Attributes

– xmlns attributes for the schema namespace and for

the namespace being defined

– A targetNamespace attribute declaring the

namespace being defined

– An elementFormDefault attribute with the value

qualified to indicate that all elements defined in the

target namespace must be namespace qualified

(either with a prefix or default) when used

16

Defining a Schema Instance

 The xmlns attribute declares a namespace for an

element and its descendants

– <element xmlns[:prefix]=“URI”>

– The element itself may not be in the namespace

– Multiple elements may be defined

 The http://www.w3.org/2001/XMLSchema-instance

namespace includes one attribute, schema Location

– That attribute value is pairs, separated by spaces

– Each pair consists of a namespace and the location of

a file that defines that namespace

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

17

An Overview of Data Types

 Data types are of two kinds

– Simple data types with string content

– Complex data types with elements, attributes and

string content

 Predefined types

– Primitive

– Derived

 Restrictions

– Facets

 Anonymous and named types

18

Simple Types

 Named types can be used to give the type of

– an attribute (which must be simple) or

– an element (which may be simple or complex)

 Elements or attributes with simple type may

have default values specified

 New simple types can be defined by

restriction of base types

– Facet maxLength

– Facet precision

19

Complex Types

 Definition of a complex type can specify

– Elements in content (either sequence or choice)

 Individual elements may specify a multiplicity

– Attributes that can appear for an element of that type

– Whether plain text is allowed in the content, a mixed

type

 An element definition can be associated with a

type by

– Referring to a named type directly in the type attribute

– Including an anonymous type definition

20

Validating Instances of Schemas

 Various systems for validating instances

against schemas

– Online http://www.w3.org/2001/03/webdata/xsv

– XML support libraries include validation: Xerces from

Apache, Saxon, Altova XML tools

– Some IDE‟s have automatic validation: Altova Spy,

Eclipse with Oxygen, Eclipse with XML Buddy Pro

 Certain IDE‟s will use schemas to provide

support for XML file creation

http://www.w3.org/2001/03/webdata/xsv

21

Displaying Raw XML Documents

 Plain XML documents are generally

displayed literally by browsers

– Firefox notes that there is no style information

22

Displaying XML Documents with CSS

 An xml-stylesheet processing instruction can

be used to associate a general XML

document with a style sheet

– <?xml-stylesheet type=“text/css”

href=“planes.css”>

 The style sheet selectors will specify tags

that appear in a particular document

23

XSLT Style Sheets

 A family of specifications for transforming XML

documents

– XSLT: specifies how to transform documents

– XPath: specifies how to select parts of a document

and compute values

– XSL-FO: specifies a target XML language describing

the printed page

 XSLT describes how to transform XML documents into

other XML documents such as XHTML

– XSLT can be used to transform to non-XML

documents as well

24

Overview of XSLT

 A functional style programming language

 Basic syntax is XML

– There is some similarity to LISP and Scheme

 An XSLT processor takes an XML document

as input and produces output based on the

specifications of an XSLT document

25

XSLT Processing

XSLT
Document

XML
Document

XSLT
Processor

XSL
Document

26

XSLT Structure

 An XSLT document contains templates

 XPath is used to specify patterns of elements to which the

templates should apply

 The content of a template specifies how the matched element

should be processed

 The XSLT processor will look for parts of the input document that

match a template and apply the content of the template when a

match is found

 Two models

– Template-driven works with highly regular data

– Data-driven works with more loosely structured data with a

recursive structure (like XHTML documents)

27

XSL Transformations for Presentation

 One of the most common applications of XSLT is to

transform an XML document into an XHTML document

for display

 A XSLT style sheet can be associated with an XML

document by using a processor instruction

 <?xml-stylesheet type=“text/xsl” href=“stylesheet-ref”?>

 The example xslplane.xml is an xml file with data about

a single plane

– The file is linkded to the stylesheet xslplane.xsl

28

XSLT Organization

 Root element stylesheet

– Specifies namespaces for XSL and for non-XSLT

elements included in the stylesheet

<xsl:stylesheet xmlns:xsl =

"http://www.w3.org/1999/XSL/Format"

xmlns =

"http://www.w3.org/1999/xhtml">

 Elements in XSLT itself will have the prefix xsl:

 Elements from XHTML will have no prefix (default

namespace)

29

XSLT Templates

 There must be at least one template element in an style

sheet

 The value of the match attribute is an XPath expression

which specifies to which nodes the template applies

 Two standard choices for the match expression of the first

template

– „/‟ to match the root node of the entire document structure

– „root-tag‟ to match the root element of the document

 The first template is applied automatically

 All other templates are applied only in response to apply-

template elements

30

XPath Basics and Node Selection

 An XPath expression beginning with a / specifies nodes

in an absolute position relative to the document root node

 Otherwise, the expression specifies nodes relative to the

current node, that is the node being processed before the

matched node

 The expression „.‟ refers to the current node

 The apply-templates tag uses the select attribute to

choose which nodes should be matched to templates

 There is a default template applied if one is not provided

that matches a selected node

31

Producing Transformation Output

 Elements not belonging to XSLT and other text will be copied to the

output when the containing template is applied

 The value-of tag causes the select attribute value to be evaluated

and the result is put into the output

– The value of an element is the text contained in it and in sub-

elements

– The value of an attribute is the value

 Example xslplane1.xsl transforms the xslplane.xml file into XHTML

for display purposes

– If the style sheet is in the same directory as the XML file, some

browsers will pick up the transformation and apply it

– This works with Firefox and Internet Explorer but not Opera

32

Processing Repeated Elements

 File xslplanes.xml contains data about multiple airplanes

 The style sheet xslplanes.xsl uses a for-each element to

process each plane element in the source document

 A sort element could be included to sort output

– The element

<xsl:sort select=“year” data-

type=“number”/>

– Specifies sorting by year

33

XML Processors

 XML processors provide tools in

programming languages to read in XML

documents, manipulate them and to write

them out

34

Purposes of XML Processors

 Four purposes

– Check the basic syntax of the input document

– Replace entities

– Insert default values specified by schemas or DTD‟s

– If the parser is able and it is requested, validate the

input document against the specified schemas or

DTD‟s

 The basic structure of XML is simple and repetitive, so

providing library support is reasonable

35

Purposes of XML Processors

 Examples

– Xerces-J from the Apache foundation provides library

support for Java

– Command line utilities are provided for checking well-

formedness and validity

 Two different standards/models for processing

– SAX

– DOM

36

Parsing

 The process of reading in a document and

analyzing its structure is called parsing

 The parser provides as output a structured

view of the input document

37

The SAX Approach

 In the SAX approach, an XML document is

read in serially

 As certain conditions, called events, are

recognized, event handlers are called

 The program using this approach only sees

part of the document at a time

38

The DOM Approach

 In the DOM approach, the parser produces an in-memory

representation of the input document

– Because of the well-formedness rules of XML, the structure is a

tree

 Advantages over SAX

– Parts of the document can be accessed more than once

– The document can be restructured

– Access can be made to any part of the document at any time

– Processing is delayed until the entire document is checked for

proper structure and, perhaps, validity

 One major disadvantage is that a very large document may not fit in

memory entirely

39

Web Services

 Allow interoperation of software components on

different systems written in different languages

 Servers that provide software services rather

than documents

 Remote Procedure Call

– DCOM and CORBA provide impllementations

– DCOM is Microsoft specific

– CORBA is cross-platrom

40

Web Service Protocols

 Three roles in web services

– Service providers

– Service requestors

– Service registry

 The Web Services Definition Language provides a

standard way to describe services

 The Universal Description, Discovery and Integration

service provides a standard way to provide information

about services in response to a query

 SOAP is used to specify requests and responses

