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Introduction

 eXtensible Markup Language

 Developed from SGML

 A meta-markup language

 Deficiencies of HTML and SGML

– Lax syntactical rules

– Many complex features that are rarely used

 HTML is a markup language, XML is used to define markup 

languages

 Markup languages defined in XML are known as applications

 XML can be written by hand or generated by computer

– Useful for data exchange
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The Syntax of XML

 Levels of syntax

– Well-formed documents conform to basic XML rules

– Valid documents are well-formed and also conform 

to a schema which defines details of the allowed 

content
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The Syntax of XML

 Well-formed XML documents

– All begin tags have a matching end tag

 Empty tags

– If a begin tag is inside an element, the matching end tag is also

– There is one root tag that contains all the other tags in a 

document

– Attributes must have a value assigned, the value must be quoted

– The characters <, >, & can only appear with their special meaning

– http://www.w3.org/TR/2006/REC-xml-20060816/#sec-well-formed

is the official definition

 Validity is tested against a schema, discussed later
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XML Document Structure

 Auxiliary files

– Schema file

 DTD or XML Schema or one of several other 

– Style file

 Cascading Style Sheets

 XSLT

 Breaking file up

– Document entities

– Entity syntax

 Character data

– <![CDATA ….. ]]>
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Document Type Definitions

 A set of declarations

 Define tags, attributes, entities

 Specify the order and nesting of tags

 Specify which attributes can be used with 

which tags

 General syntax

– <!keyword …. >

– Note, not XML!
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Declaring Elements

 General syntax

– <!ELEMENT element-name content-description)>

– Content description specifies what tags may appear inside the 

named element and whether there may be any plain text in the 

content

 Sequence of tags

 Alternate tags

 Multiplicity

– +

– *

– ?

 #PCDATA 
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Declaring Attributes

 General syntax

– <!ATTLIST element-name

(attribute-name attribute-type default-value?)+ >

 Default values

– A value

– #FIXED value

– #REQUIRED

– #IMPLIED  (default, if not specified)
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Declaring Entities

 General Syntax

– <!ENTITY [%] entity-name “entity-value”>

– With %: a parameter entity

– Without %: a general entity

 Parameter entities may only be referenced in the 

DTD

 Remote form

– <!ENTITY entity-name SYSTEM “file-location”>

– The replacement for the entity is the content of the file
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Sample DTD
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Internal and External DTDs

 A document type declaration can either contain declarations directly 

or can refer to another file

 Internal

– <!DOCTYPE root-element [

declarations

]>

 External file

– <!DOCTYPE root-name SYSTEM “file-name”>

 A public identifier can also be specified, that would be mapped to a 

system identifier by the processing system
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Namespaces

 “XML namespaces provide a simple method for qualifying element and 

attribute names used in Extensible Markup Language documents by 

associating them with namespaces identified by URI references.”

– From the specification 

http://www.w3.org/TR/2006/REC-xml-names-20060816/

 A namespace can be declared for an element and its descendants by

– <element xmlns[:prefix]=“URI”>

– The prefix is used to qualify elements that belong to the 

namespace

– Multiple namespaces can be used in a single document

– Default namespace

 DTDs do not support namespaces very well
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XML Schemas

 Schema is a generic term for any description 

of an XML content  model

 DTDs have several deficits

– They do not use XML syntax

– They do not support namespaces

– Data types cannot be strictly specified

 Example date vs. string
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Schema Fundamentals

 Documents that conform to a schema‟s rules 

are considered instances of that schema

 Schema purposes

– Structure of instances

– Data types of elements and attributes

 XML Schemas support namespaces

– The XML Schema language itself is a set of XML 

tags

– The application being described is another set of 

tags
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Defining a Schema

 The root of an XML Schema document is the schema tag

 Attributes

– xmlns attributes for the schema namespace and for 

the namespace being defined

– A targetNamespace attribute declaring the 

namespace being defined

– An elementFormDefault attribute with the value 

qualified to indicate that all elements defined in the 

target namespace must be namespace qualified 

(either with a prefix or default) when used
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Defining a Schema Instance

 The xmlns attribute declares a namespace for an 

element and its descendants

– <element xmlns[:prefix]=“URI”>

– The element itself may not be in the namespace

– Multiple elements may be defined

 The http://www.w3.org/2001/XMLSchema-instance

namespace includes one attribute, schema Location

– That attribute value is pairs, separated by spaces

– Each pair consists of a namespace and the location of 

a file that defines that namespace

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
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An Overview of Data Types

 Data types are of two kinds

– Simple data types with string content

– Complex data types with elements, attributes and 

string content

 Predefined types

– Primitive

– Derived

 Restrictions

– Facets

 Anonymous and named types
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Simple Types

 Named types can be used to give the type of 

– an attribute (which must be simple) or 

– an element (which may be simple or complex)

 Elements or attributes with simple type may 

have default values specified

 New simple types can be defined by 

restriction of base types

– Facet maxLength

– Facet precision
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Complex Types

 Definition of a complex type can specify

– Elements in content (either sequence or choice)

 Individual elements may specify a multiplicity

– Attributes that can appear for an element of that type

– Whether plain text is allowed in the content, a mixed

type

 An element definition can be associated with a 

type by

– Referring to a named type directly in the type attribute

– Including an anonymous type definition
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Validating Instances of Schemas

 Various systems for validating instances 

against schemas

– Online http://www.w3.org/2001/03/webdata/xsv

– XML support libraries include validation: Xerces from 

Apache, Saxon, Altova XML tools

– Some IDE‟s have automatic validation: Altova Spy, 

Eclipse with Oxygen, Eclipse with XML Buddy Pro

 Certain IDE‟s will use schemas to provide 

support for XML file creation

http://www.w3.org/2001/03/webdata/xsv
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Displaying Raw XML Documents

 Plain XML documents are generally 

displayed literally by browsers

– Firefox notes that there is no style information
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Displaying XML Documents with CSS

 An xml-stylesheet processing instruction can 

be used to associate a general XML 

document with a style sheet

– <?xml-stylesheet type=“text/css” 

href=“planes.css”>

 The style sheet selectors will specify tags 

that appear in a particular document
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XSLT Style Sheets

 A family of specifications for transforming XML 

documents

– XSLT:  specifies how to transform documents

– XPath: specifies how to select parts of a document 

and compute values

– XSL-FO: specifies a target XML language describing 

the printed page

 XSLT describes how to transform XML documents into 

other XML documents such as XHTML

– XSLT can be used to transform to non-XML 

documents as well
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Overview of XSLT

 A functional style programming language

 Basic syntax is XML

– There is some similarity to LISP and Scheme

 An XSLT processor takes an XML document 

as input and produces output based on the 

specifications of an XSLT document
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XSLT Processing

XSLT
Document

XML
Document

XSLT
Processor

XSL
Document
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XSLT Structure

 An XSLT document contains templates

 XPath is used to specify patterns of elements to which the 

templates should apply

 The content of a template specifies how the matched element 

should be processed

 The XSLT processor will look for parts of the input document that 

match a template and apply the content of the template when a 

match is found

 Two models

– Template-driven works with highly regular data

– Data-driven works with more loosely structured data with a 

recursive structure (like XHTML documents)
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XSL Transformations for Presentation

 One of the most common applications of XSLT is to 

transform an XML document into an XHTML document 

for display

 A XSLT style sheet can be associated with an XML 

document by using a processor instruction

 <?xml-stylesheet type=“text/xsl” href=“stylesheet-ref”?>

 The example xslplane.xml is an xml file with data about 

a single plane

– The file is linkded to the stylesheet xslplane.xsl



28

XSLT Organization

 Root element stylesheet 

– Specifies namespaces for XSL and for non-XSLT 

elements included in the stylesheet

<xsl:stylesheet xmlns:xsl =

"http://www.w3.org/1999/XSL/Format"

xmlns = 

"http://www.w3.org/1999/xhtml">

 Elements in XSLT itself will have the prefix xsl:

 Elements from XHTML will have no prefix (default 

namespace)
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XSLT  Templates

 There must be at least one template element in an style 

sheet

 The value of the match attribute is an XPath expression 

which specifies to which nodes the template applies

 Two standard choices for the match expression of the first 

template

– „/‟  to match the root node of the entire document structure

– „root-tag‟ to match the root element of the document

 The first template is applied automatically

 All other templates are applied only in response to apply-

template elements
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XPath Basics and Node Selection

 An XPath expression beginning with a / specifies nodes 

in an absolute position relative to the document root node

 Otherwise, the expression specifies nodes relative to the 

current node, that is the node being processed before the 

matched node

 The expression „.‟ refers to the current node

 The apply-templates tag uses the select attribute to 

choose which nodes should be matched to templates

 There is a default template applied if one is not provided 

that matches a selected node
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Producing Transformation Output

 Elements not belonging to XSLT and other text will be copied to the 

output when the containing template is applied

 The value-of tag causes the select attribute value to be evaluated 

and the result is put into the output

– The value of an element is the text contained in it and in sub-

elements

– The value of an attribute is the value

 Example xslplane1.xsl transforms the xslplane.xml file into XHTML 

for display purposes

– If the style sheet is in the same directory as the XML file, some 

browsers will pick up the transformation and apply it

– This works with Firefox and Internet Explorer but not Opera
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Processing Repeated Elements

 File xslplanes.xml contains data about multiple airplanes

 The style sheet xslplanes.xsl uses a for-each element to 

process each plane element in the source document

 A sort element could be included to sort output

– The element

<xsl:sort select=“year” data-

type=“number”/>

– Specifies sorting by year
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XML Processors

 XML processors provide tools in 

programming languages to read in XML 

documents, manipulate them and to write 

them out
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Purposes of XML Processors

 Four purposes

– Check the basic syntax of the input document

– Replace entities

– Insert default values specified by schemas or DTD‟s

– If the parser is able and it is requested, validate the  

input document against the specified schemas or 

DTD‟s

 The basic structure of XML is simple and repetitive, so 

providing library support is reasonable
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Purposes of XML Processors

 Examples

– Xerces-J from the Apache foundation provides library 

support for Java

– Command line utilities are provided for checking well-

formedness and validity

 Two different standards/models for processing

– SAX

– DOM
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Parsing

 The process of reading in a document and 

analyzing its structure is called parsing

 The parser provides as output a structured 

view of the input document
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The SAX Approach

 In the SAX approach, an XML document is 

read in serially

 As certain conditions, called events, are 

recognized, event handlers are called

 The program using this approach only sees 

part of the document at a time
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The DOM Approach

 In the DOM approach, the parser produces an in-memory 

representation of the input document

– Because of the well-formedness rules of XML, the structure is a 

tree

 Advantages over SAX

– Parts of the document can be accessed more than once

– The document can be restructured

– Access can be made to any part of the document at any time

– Processing is delayed until the entire document is checked for 

proper structure and, perhaps, validity

 One major disadvantage is that a very large document may not fit in 

memory entirely
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Web Services

 Allow interoperation of software components on 

different systems written in different languages

 Servers that provide software services rather 

than documents

 Remote Procedure Call

– DCOM and CORBA provide impllementations

– DCOM is Microsoft specific

– CORBA is cross-platrom
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Web Service Protocols

 Three roles in web services

– Service providers

– Service requestors

– Service registry

 The Web Services Definition Language provides a 

standard way to describe services

 The Universal Description, Discovery and Integration 

service provides a standard way to provide information 

about services in response to a query

 SOAP is used to specify requests and responses


