
Syrian Private University
Faculty of Informatics & Computer Engineering

SNA²
A Mathematical Program

Junior Project

Prepared By
Saleh Al-Hakeem
Nour Aldeen Arar
Adham Khwaldeh
Akram Lazkanee

Under Supervision Of
Dr. Samir Jafar

All copyright reserved for Syrian Private University [SPU]
©2015

This page left blank on purpose

______________________ Page 2 ______________________

Table Of Contents :

Title Page

List of figures …... 4

List of tables ... 5

Abstract .. 6

Introduction .. 7

What is SNA² ? .. 8

Chapter 1 : System Analysis ….. 9

 1.1 Actor Specification …... 9

 1.2 Use Case Diagram ….. 10

 1.3 Use Case Description …... 11

Chapter 2 : System Design ... 15

 2.1 Class Diagram ….. 15

 2.2 Flow of The Program ... 17

 2.3 Form of Input ... 18

Chapter 3 : System Implementation …... 21

 3.1 Under The Hood …... 21

 3.2 Implementing The Core ... 23

 3.3 Implementing The Commands ... 25

 3.4 Supportive Functions …... 31

Chapter 4 : System Testing .. 34

Conclusion and future Visions …... 36

References ….. 37

______________________ Page 3 ______________________

List Of Figures :

Figure Page

Figure 1.1 : Use Case Diagram .. 10

Figure 2.1 : Class Diagram ….. 16

Figure 2.2 : Flow of The Program .. 17

Figure 3.1 : The Overall Structure of The Boost Spirit Library ... 22

Figure 3.2 : Trie Representation ... 23

Figure 3.3 : Node Structure ….. 24

Figure 3.4 : Tree Structure …... 24

Figure 3.5 : Variable Structure …... 25

Figure 3.6 : Scope Structure …... 25

Figure 3.7 : Solve Structure …......................…... 27

Figure 3.8 : Activity Diagram for FormSetup(); .. 27

Figure 3.9 : Activity Diagram for Run(); …... 27

Figure 3.10 : Activity Diagram for RunFromForm(); .. 28

Figure 3.11 : Activity Diagram for Run Form …... 28

Figure 3.12 : Form Structure …......................….. 29

Figure 3.13 : Activity Diagram for Add Form to Trie .. 29

Figure 3.14 : Activity Diagram for Clone, Value and Print .. 31

Figure 3.15 : General Flow for Order …... 31

Figure 3.16 : Adding Node to Ordered List .. 32

Figure 4.1 : System Testing 1 …... 34

Figure 4.2 : System Testing 2 …... 35

______________________ Page 4 ______________________

List Of Tables :

Table Page

Table 1.1 Actor specification …... 9

Table 1.2 Use Case Description Tables .. 11

______________________ Page 5 ______________________

Abstract

This project is a mathematical program called SNA², and it is aimed to help users in

mathematical fields.

This program can solve polynomial mathematical equations from variant degrees, it

can show you the steps taken to achieve the result for pedagogical and academic

purposes.

This program strength points that we can input the equations in the natural

mathematical form also it can learn new ways from users to use it later.

______________________ Page 6 ______________________

Introduction

Most of the time people find it hard to solve mathematical equations, especially if
they don't know how, it also takes a long time to get hard equations solved, and the
most known mathematical program MATLAB is too big on medium devices, so our
goal was as Unix and Linux did, is to develop a kernel with the main operators and
process inside, then you can add modules that can solve polynomial mathematical
equations from variant degrees, also the kernel can show you the steps taken to
achieve the result for pedagogical and academic purposes, also it can learn new
ways from users to use it later.

So our work context was generally in the mathematical field.

After developing our initial idea, we now have a kernel that we will build up on in the
future, with high performance calculating process.

This report is organized in five chapters starting from the system analysis through
system design and implementation and ending with system testing.

______________________ Page 7 ______________________

What is SNA²
SNA² provides an environment which can solve various mathematical problems, and

provide insight on the steps taken to achieve that solution.

The user has various commands at his disposal. Each command allows for a different
result to occur within this environment, with each affecting the environment in the
way they treat mathematical problems that were inputted.

______________________ Page 8 ______________________

Chapter 1 : System Analysis

In this chapter we are going to discuss the steps taken to analysis the system in three
parts :

1. Actor Specification.

2. Use case diagram.

3. Use case description.

1.1 Actor Specification

In this section we present the actor specification table

Actor Name: User
Type: Primary Personality: External, Initiator & Receiver Abstract: No

Role Description:

The user interact with the system by queries for either solving problems or suppling more ways to solve, in

addition the user can learn the algorithms .
Actor Goals

• Input equations to solve.

• Add new forms, algorithms or for non-present solutions for problems.

Use Cases Involved with:

• Input Query

Table 1.1: Actor Specification

______________________ Page 9 ______________________

1.2 Use Case Diagram
A use case diagram at its simplest is a representation of a user's interaction with
the system that shows the relationship between the user and the different use cases
in which the user is involved.

A use case diagram can identify the different types of users of a system and the
different use cases and will often be accompanied by other types of diagrams as well.

______________________ Page 10 ______________________

Figure 1.1: Use Case Diagram

1.3 Use Case Description

For agile development, a requirement model of many UML diagrams depicting use
cases plus some textual descriptions, notes or use case briefs would be very
lightweight and just enough for small or easy project use.

Number 1

Name Input Query

Summary The user inputs a query

Actors Primary: User

Pre-Conditions -

Scenario
1. Write a Query

2. Press Enter

Exceptions
• The user inputted an empty query

• The user inputted a non valid query

Post-Conditions The user receives an output based on his query

Number 2

Name Global Option Change

Summary The user can change options that affect the program

Actors Primary : User

Pre-Conditions -

Scenario
1. Check option if exists
2. Toggle option

Exceptions • Option doesn't exists

Post-Conditions The system altered.

______________________ Page 11 ______________________

Number 3

Name Equation to evaluate

Summary
The equation is evaluated and a result based on the

evaluation is made.

Actors Primary : User

Pre-Conditions -

Scenario

1. Evaluate Expression

2. Refine

3. Find Related Form

4. Solve

Exceptions
• No form found.

• Invalid equation

Post-Conditions The equation is solved

Number 4

Name Exit Program

Summary The Program shuts down

Actors Primary : User

Pre-Conditions -

Scenario 1. Shut down the program

Exceptions -

Post-Conditions Program has exited

______________________ Page 12 ______________________

Number 5

Name Load Input from File

Summary The file gets loaded and all commands within are parsed.

Actors Primary : User

Pre-Conditions File exists

Scenario

1. Check if File Exists

2. Open To read from

3. Parse all available commands from within.

Exceptions
• File doesn't exists

• All exceptions from other cases apply here

Post-Conditions The whole file is parsed

Number 6

Name Print Command

Summary Prints Whatever was held along the Print command

Actors Primary : User

Pre-Conditions -

Scenario 1. Print

Exceptions • Invalid input

Post-Conditions Printed on screen

______________________ Page 13 ______________________

Number 7

Name Form Build

Summary A new Form is Added by the user to the environment.

Actors Primary : User

Pre-Conditions -

Scenario

1. Check command

2. Evaluate Form

3. Setup Procedures

4. Add to list of Forms

Exceptions • Invalid input or form

Post-Conditions Equations of the new form are now solvable

Number 8

Name Conditional command

Summary Allows there to be a conditional branching in forms

Actors Primary : User

Pre-Conditions Used within the form do statement

Scenario
1. Setup condition
2. Setup children

Exceptions • Invalid input or condition

Post-Conditions A conditional branch within the form

Number 9

Name End command

Summary
Tells the Form that when met, no more procedures are to be
executed.

Actors Primary : User

Pre-Conditions -

Scenario -

Exceptions -

Post-Conditions The Form Procedure running exits on hit from command

______________________ Page 14 ______________________

Chapter 2 : System Design
In this chapter we are going to discuss the steps taken to design the system in one
part :

1. Class diagram.
2. Flow of the program.
3. Form of input.

2.1 Class Diagram

A class diagram is a type of static structure diagram that describes the structure of
a system by showing the system's classes, their attributes, operations (or methods),
and the relationships among objects.

______________________ Page 15 ______________________

______________________ Page 16 ______________________

F
ig

ur
e

2.
1:

 C
la

ss
 D

ia
gr

am

2.2 Flow of The Program

The Program handles the input in the following way:

• Waits for user input.

• Parses the input and extracts the needed data in the form of a [Command] and

other types of data.

• Depending on what type of command was inputted, the environment applies it

and returns a result to the user.

• The program returns to wait for the user input.

______________________ Page 17 ______________________

Figure 2.2: Flow of the Program

2.3 Form of Input

As it receives the input, SNA² starts its parsing cycle, trying to make sense of it.

There is a definite form that the user has to adhere to for the program to recognize
what has been inputted.

The equation uses the following operators:

Sign Purpose Example

+ Addition – Positive a+b OR +a

- Subtraction or Negative a-b OR -a

* Multiplication a*b

/ Division a/b

^ Exponents a^b which represents ab

The user has to adhere to these rules when handling equations, otherwise the
program would not be able to recognize it.

For example : 1 + 2x + 3x2 should be written as 1 + 2*x + 3*x^2

The user can also use a string of characters denoting a variable. However that string
should be compromised of letters and the underscore.

As for commands, There Forms that the user should abide to will be mentioned in the
following section.

➢Available Commands

The user has various commands at his disposal, each following a different form of
input.

But most of them follow the general form of:

[Command] : [Respective_Input]

We now providing the following commands, and along with their form a brief
description of what each of them is.

______________________ Page 18 ______________________

• Solve command:

- The Solve command, which is stated as default, takes the respective input of
an equation.

- It would have the following form:

[Equation] OR Solve: [Equation]

- The Solve command, when applied, will take the Equation given and try to find
a solution for it, and based on the solution, the user should receive an output.

- If the user wishes to associate the [Equation] with a certain identifier, it should
take the following form:

[identifier] = [Equation]

• Print command:

Print “String” OR Print [identifier]

- The Print command is as its name describes, a command used to print a
particular thing to the user.

- Printing the string will just output the string, while printing the Identifier will
print the identifier itself, and what was saved to it as a result.

• Option command:

Toggle [Option]

- The Option Command is used to toggle options that affect the environment
and the behavior of the algorithm used within the program.

- One of the options, Trace, allows the user to see the set of procedures applied
to reach the solution.

• Load File command:

Load “Filename”

- The Load File command when applied takes the input from a file and parse as
if it was user input, the solution to each parsed command in the File will be
displayed on the console of the program.

______________________ Page 19 ______________________

• Form command:

Form:{
name: “String”
variable: [identifier], …
form: [Equation]
do: [List of Commands]

}

- The Form command is the corner stone of the program. The user can define a
new form for the program to look for, and a set of commands (procedures) to
apply if the form is met.

- The form should follow that general look, but the name, and variable lines are
optional, and give the form extra information to work with. Note that if the form
has a variable, it should be stated in the variable line, otherwise all identifiers
will be regarded as unknown constants.

• If command:

If: [Condition]
 { [List of Commands] }
else
 { [List of Commands] }

- The If command, which can be only used within the Form do statement, is a
command set to give the user more flexibility on how to deal with the various
forms that could be meant. If the condition is met, it will apply the first list of
commands, but if it were false, it would apply the second.

- The else statement, and the 2nd list of commands are optional, and if the
program couldn’t match the Condition, it would just move on and apply nothing.

- The Condition is of the form:

 [Equation] [Comparison Sign] [Equation]

• End command:

End
- The End command, which can be only used within the Form do statement, is a
command that is used to tell the program that once it hits that command to
stop applying procedures.

• Exit command:

Exit
- The Exit command, tells the program that it has finished its job, and that it
should exit. The User should use this when they want to exit the program
safely, encase anything should be saved.

______________________ Page 20 ______________________

Chapter 3 : System Implementation

In this chapter we are going to discuss the steps taken to implement the system and
the techniques used for it.

3.1 Under The Hood

This project has been written using C++ Language, Boost library and Trie

➢C++
C++ is a general-purpose programming language. It has
imperative, object-oriented and generic programming features,
while also providing facilities for low-level memory manipulation.

C++ is standardized by the International Organization for
Standardization(ISO), with the latest (and current) standard version
ratified and published by ISO in December 2014 as ISO/IEC
14882:2014 (informally known as C++14).

The C++ programming language was initially standardized in 1998 as ISO/IEC
14882:1998 .

➢Boost Library

Boost is a set of libraries for the C++programming language that provide support for
tasks and structures such as linear algebra,
pseudorandom number generation, multithreading,
image processing, regular expressions, and unit
testing .It contains over eighty individual libraries.

Most of the Boost libraries are licensed under the Boost Software License, designed to
allow Boost to be used with both free and proprietary software projects. Many of
Boost's founders are on the C++ standards committee, and several Boost libraries
have been accepted for incorporation into both Technical Report 1and the C++11
standard.

______________________ Page 21 ______________________

Boost::Spirit is an object-oriented parser and output generation library for C++. It
allows you to write grammars and format descriptions using a format similar to
Extended Backus Naur Form (EBNF)directly in C++. These inline grammar
specifications can mix freely with other C++ code and, thanks to the generative
power of C++ templates, are immediately executable. In retrospect, conventional
compiler-compilers or parser-generators have to perform an additional translation
step from the source EBNF code to C or C++ code.

Boost::Spirit::Qi This is the parser library allowing you to build recursive descent
parsers.

The exposed domain-specific language can be used to describe the grammars to
implement, and the rules for storing the parsed information, so it is a Spirit's sub-
library dealing with generating parsers based on a given target grammar (essentially
a format description of the input data to read).

______________________ Page 22 ______________________

Figure 3.1: The overall structure of the Boost Spirit library

➢The Trie

The trie is an information retrieval data structure, of
which their search complexity would take up about O(m)
where m is the length of input.

The only downside is the space complexity of the data
structure.

But with the way we designed our program, that won’t be
much of an issue.

Within the tree, the inner nodes consist of a value which
has to be returned, and a list of pointers to the next
couple of nodes. In our program the data structure used
to link to other nodes is a map.

When trying to match an input, the trie is traversed, if it
stays within the bounds of the trie, it would return the
value of the last node it ends up on. Otherwise it would
return a default value.

______________________ Page 23 ______________________

Figure 3.2: Trie Representation

3.2 Implementing The Core

We talked about the general flow of the program, the exact form the user should abide to,
and the parser that was used in the program.
Now we talk about the internal workings of the program.

➢The Node:
The program revolves around solving mathematical
equations, so we had to represent it a purposeful manner.

We wanted a general structure that can describe the many
forms that could be used, such as binary operators,
constants, variables, etc…

We decided on the following structure, a Node with:

• Type (int): Denotes what kind of Node the current one is.

• Id (int): Which gives extra information on the Node that

differs in meaning depending on the type.

• Flags (int): Allows the Node to hold extra information on

the current state the Node is in.

• Children (vector<Node*>): which points to the children this current Node has.

➢The Tree:
The Tree is an extra structure that holds extra information on
the tree made of nodes as a whole.

Of the most important fields in this structure:

• Constants (vector<int>): which holds the constants

that the Tree uses, a Node of type Constant accesses this
information.

• Variables (vector<int>): holds the Variable ID that is

used within the tree.

• MNode (Node*): a pointer that points towards the top

node of the tree.

______________________ Page 24 ______________________

Figure 3.3: Node Structure

Figure 3.4: Tree Structure

➢The Variable:
Holds most information the Variable needs to function.

• Name (string): which represents the name(identifier)

that is used to access the variable

• Result (tree*): which represents the result that is

saved on it. Points to the tree in question.

• resultNode(Node*): represents the Node that the

variable points to, the node can be different from the tree
main node, meaning it can be pointing towards a sub tree inside, with all the
necessary information saved inside the tree.

➢The Scope:
Holds all the information about what is occurring within that
scope of action.

Separate Scopes are initialized when using a command such
as form or when loading a file. The Scopes are used to
separate the entities that need not be affected by outside
information.
Important fields:

• Variables (vector<Variable>): which holds all the

variable information of the variables used within this scope.

• VarMap (map<string,int>): which holds the ID that is assigned to the identifier,

so that the program know what each identifier it passes through is.

______________________ Page 25 ______________________

Figure 3.5: Variable Structure

Figure 3.6: Scope Structure

3.3 Implementing the Commands

During the parsing cycle, the equations are dissected into the core structures that were
presented. In that cycle, any odd information that it passes by is recorded into the flags of
the right structures.

Which gets us to the command preparation cycle in which all the needed information is
prepared for running the parsed command.

Lets start with the easiest of all commands.

• Exit command:

The keyword is the only thing that needs to be mentioned, and the program will exit.

• Option command:

By using Toggle keyword, the string that follows is stored with the command.

Once the command is run, it will check whether the string related to any global option,
If it does, then it alters it, otherwise it would tell the user it was invalid.

• Run command:

Which only saves the filename. Once it is run, it checks whether the file exists or not.
If it does, it constructs a new scope and moves on to handle parsing the commands
within that file.

• Print command:

The Print command has two forms. The Print Command accepts a string, or an
identifier, for both, the information is saved in a string that we called “a”.
If a string was found, when the command is run, it will just print out the string stored
within the “a” field.

If an identifier was found, then it would print that identifier, and print any result that
might be attached to it.

Now for the bit complicated commands that get executed.

• End command:

When met, the program knows that this is the end of the path in the set of procedures
that it is applying.

• If command:

A conditional command, that when run, it applies the condition and chooses which set
of procedures to continue executing.

______________________ Page 26 ______________________

• Solve command:

First off is the main information the Solve command needs.

• Mode (int): which determines mode of solution, currently set

up and reserved for future releases.

• SaveResult (bool): which determines whether the result is

going to be saved into the variable.

• TargetId (int): which determines which variable it is going to

save to incase SaveResult has been activated.

• TargetTree (int): is the tree, equation basically, that is

going to be the center of the command.

The Solve command has the three main functions to work with
Run() , Formsetup(), RunFromForm().

When a solve command is issued from within a form, any identifier
that is not present inside the variable list determined in the form
will be considered an unknown constant.

• FormSetup();

All it does is setup everything needed for the command to work
or to ease up performance when RunFromForm() is called.

• Run();

The main frame is simple,

It sets up the tree its going to work with.

Finds the Form it is related to, and depends on
the results the command acts to notify the
user.

And its fairly simple to find the form and uses
the same way it does when its adding a form.

divides the tree into bases,

and goes through the trie to find its respective
form.

The only difference is that in this instance it is
not allowed to change the way the tree is
setup.

______________________ Page 27 ______________________

Figure 3.7: Solve
Structure

Figure 3.8:
Activity
Diagram for
FormSetup();

Figure 3.9:
Activity Diagram
for Run();

• RunFromForm();

It starts off by taking in the list of
unknown constants with a result that
has been assigned to them, Then
makes a clone of the target tree with
all the unknown constants replaced
with their results, from that clone it
checks for whether the result should
be saved or not.

If it does then it saves it to the
assigned identifier, which

could be an unknown constant or a
variable.

On the other hand it would just apply
the equation and get an answer, then
dump the answer away.

• Form command:

When the parser takes in four main
statements that the Form command needs to execute.

The name given to the form, the variables present within the form, and the form itself,
followed by the set of procedures the form has to run once it is found.

As the whole command gets structured, and ready for deployment, A set of functions
are run to include the new form into the number of forms in the database.

The main flow of the command is pretty straight forward.

At first it works on the inputted data, ordering the tree, seeing if any extra work needs
to be done on it before it moves on.

After that, a new form is constructed which holds all the necessary information that it
would need function properly.

______________________ Page 28 ______________________

Figure 3.10:
Activity Diagram
for
RunFromForm();

Figure 3.11: Activity Diagram for Run Form

• Scope (Scope*): Which points to the scope that all

the procedures within will work with once the form is found
and run.

• Tree (Tree*): Holds the main tree information.

• Procedure (vector<Command*>): Which holds all

the commands to be run as procedures when the form is
found and run.

• Name (string): Is the name given to the form.

Constants, unknown, nodes and constantId2Index are all
important extra information that are used to identify which
form later on during the Solve command.

After the form is constructed and ready to be saved, it has to be
added into the list of forms and a trie like structure.

The main tree that defines
the form is taken and
separated into what we call
bases.

Based on those bases the
trie is constructed.

During the addition of a
form to the trie, it would
start going through the
nodes one by one until it
reaches the end of the list
of nodes.

Along the way, if a node
does not exist, a new node
is constructed.

Once they reach the end
of the list, the last node it
falls on determines which
set of forms this new form
belongs to.

______________________ Page 29 ______________________

Figure 3.12: Form
Structure

Figure 3.13: Activity Diagram for Add Form to Trie

The new form is then added to the list and now is ready to be used.

The main tree in the form is cut to bases. These bases show information on the current
blocks in the tree.

They are just basically an ID, bases follow the same design that the Form follows.

The base ID is based on the multiplication block, the block is cut, then moved through
the trie in the same manner the form does.

But instead or relying on just an integer, the base relies on a pair of type, and ID based
on the nodes that were cut, the ID that rests on the final node it is on is then returned
to the form trie.

Returning To Form, after the Form is correctly placed in the list of forms, and its place
in the trie, the procedures get attached into the form and set up, and thus the form is
now ready to be used.

______________________ Page 30 ______________________

3.4 Supportive Functions

During the setup of a tree and output, multiple functions were made to provide varied
functionalities, most of them follow a similar design of which there is one exception.

The Following hold the same
pattern of design, with only
difference being with what it
executes within, Print, Clone, and
Value.

The Print outputs a designated
tree depending on where it has
been called, and Clone outputs a
replica of a tree while Value
which outputs a double which is
the equivalent of the answer to
the tree. The value function will
throw an exception if the
equation has an unknown
constant or variable.

The three follow the same flow of
program, which is very
dependent on the current Node it
is dealing with.

They start out by preparing anything they need to work with, and they go through the tree
Node by node, applying whatever they need to be doing based on what type of node it
exactly is, Once they finish up it cleans up anything that’s left, and moves on to return their
results.

______________________ Page 31 ______________________

Figure 3.15: General Flow of Order

Figure 3.14: Activity Diagram for Clone, Value and Print

As for ordering the Elements, It follows a different approach, the general flow of the
operation is simple, it takes a tree, takes all the nodes that need to be ordered and put them
into the list.

After all of it is done, each node is ordered, Once done it would return the ordered tree.

At the start after it sets up everything it needs, it starts a loop to input all the needed nodes
to order into a list.

It sets up a stack to record where it currently is and a list to return containing the nodes to
order and a returning flag, then it takes the main node in the tree as the current node to
work with, checks whether the returning flag has been triggered, if it hasn’t, it checks what
type of node it is, and depending on that type it would commit a change.

Mainly, if it is a leaf node, it would trigger the returning flag and start the loop anew. While if
it was the other way around, it would add the node to the stack, and to the list. Take the first
son and sets it up as the current node. And then repeat the loop.

______________________ Page 32 ______________________

Figure 3.16: Adding Nodes to Ordered List

Once the returning flag is triggered, the stack is checked to see whether it is empty or not.

If it wasn’t, it would check which son the top node is currently on, and makes the next son
the current node. Resets the returning flag, and loops.

Otherwise it would return that list for the ordering to begin.

Next we go through all the nodes in the list, the program orders the children depending on
the type of the node. Since the behavior of the ordering in addition differs from the behavior
in multiplication.

In Addition, the children are ordered depending on their types, numbers come first, then
variables, then mixed bases.

When two numbers meet, their order doesn’t change. When two variables meet, their order
depends on who appeared in the program first.

If the two of the same variable meet, then their exponent decides which comes first. it they
have the same exponent, they are kept as is.

Mixed bases come after the two, and when compared with other mixed bases, they are
compared from left to right, the elements are compared.

In multiplication, the elements are ordered as numbers, then variables.

The variables if the same aren’t altered while two different variables are switched based on
their appearance in the program.

Once all the elements are setup in an ordered fashion, then the program starts to refine the
node depending on its type.

In mathematics, during addition, two blocks consisting of the same base have their
coefficient summed, while in multiplication, the same elements have their exponents
summed.

And as such our program compares through the children and applies those two rules on
them, resulting with a new tree that’s been redefined and ready to work with.

______________________ Page 33 ______________________

Chapter IV : System Testing

In this chapter we will provide some screenshots from the program while it's running in
different cases.

Testing Load and Toggle commands

______________________ Page 34 ______________________

Figure 4.1: System Testing 1

Testing adding Forms (If command – End command – Form command) :

______________________ Page 35 ______________________

Figure 4.2: System Testing 2

Conclusion and Future Visions

➢Conclusion
At the end, this program can solve polynomial mathematical equations from variant
degrees, it can show you the steps taken to achieve the result for pedagogical and
academic purposes.

This program strength points that we can input the equations in the natural
mathematical form also it can learn new ways from users to use it later.

As you see, we have a great idea alongside huge ambitions.

We thank everyone who stood by us to help our vision to come to life and bare a
sapling that no doubt will grow into a beautiful tree.

➢Future Visions

As we now have a stable core to build up on, we have set up great plans for the
future of the product.

- Our foremost important goal is to include support for every type of mathematical
input out there, as well as the support of any form such as trigonometric functions or
complex numbers.

- Alongside our main goal, it is important that we improve the error detection in a
way to help the user understand more of what an error could be.

- We plan to spread the support of the program onto multiple platforms, including
Android and iOS devices, so that people could enjoy our software everywhere they
go, alongside image processing where the user needs only to take a picture of a
mathematical problem.

- Not to forget mentioning the improvement to the performance, and memory
management or the software.

- We will also improve on the interface, by improving the input to accommodate a
style similar to what mathematicians would use in their everyday life, as well as
develop an interactive, responsive, and dynamic (GUI) Graphical User Interface that
would be able to simplify the many aspects of our software.

______________________ Page 36 ______________________

References
1. Stroustrup, Bjarne (1997). "1". The C++ Programming Language (Third ed.).

ISBN 0-201-88954-4.
2. Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey D. (1986). Compilers: Principles,

Techniques, and Tools (1st ed.). Addison-Wesley. ISBN 9780201100884.
3. Allen, Randy; Kennedy, Ken (2001). Optimizing Compilers for Modern

Architectures. Morgan Kaufmann Publishers. ISBN 1-55860-286-0.
4. Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings

and Examples, McGraw-Hill Book Company, New York. ISBN 0-07-004357-4.
5. Protters & Morrey: " Calculus and Analytic Geometry. First Course".
6. P. Aubry, M. Moreno Maza, Triangular Sets for Solving Polynomial

Systems: a Comparative Implementation of Four Methods. J. Symb.
Comput.

7. Songxin Liang, J. Gerhard, D.J. Jeffrey, G. Moroz, A Package for Solving
Parametric Polynomial Systems. Communications in Computer Algebra
(2009).

8. http://www.boost.org/ (Boost official website)
9. http://boost-spirit.com/ (Boost Spirit official website)

______________________ Page 37 ______________________

http://www.boost.org/
http://boost-spirit.com/

