
Syrian Private University
Faculty of Informatics & Computer Engineering

EXTRACTING INFORMATION FROM
UNSTRUCTURED DATA USED IN ONLINE

NETWORKS

A Senior Project Submitted to the faculty of Informatics and Computer
Engineering at Syrian Private University in Partial Fulfillment of the

Requirements for the Degree of Bachelor in Informatics and Computer
Engineering

Prepared By
Noor Mohammad Hasan Orfahly
Shadia Abd Alkareem Hammoud

Under The Supervision Of
Dr. Mohammad Zouhier Sandouk

Eng. Mohammad Mousa Hamad

All copyrights reserved for SPU University
2013

[1]

TABLE OF CONTENTS

PAGE

List of Tables ... 3

List of Figures ... 4

Abstract ... 6

Introduction ... 7

Reference Studies .. 8

Chapter One: Obtaining Data

1.1: Overview .. 10

1.2: Methodologies, Problems and Solutions ... 10

1.3: System Analysis .. 11

1.4: Technical Details ... 11

1.5: System Design ... 12

1.6: System Implementation ... 12

Chapter Two: Extracting Information

2.1: Overview .. 14

2.2: Theoretical Introduction ... 14

2.3: System Analysis .. 14

2.4: System Design ... 14

2.5: System Implementation ... 19

Chapter Three: Optimizing Data

3.1: Overview .. 21

3.2: Theoretical Introduction ... 21

3.3: Semantic Similarity

3.3.1: Methodologies, Techniques and Procedures ... 21

3.3.2: System Analysis ... 23

3.3.3: System Design .. 23

3.3.4: System Implementation .. 26

3.4: Spell Checking

3.4.1: Hunspell Checker ... 28

3.4.2: System Analysis ... 29

3.4.3: System Design .. 29

[2]

3.4.4: System Implementation .. 32

Chapter Four: Search System

4.1: Overview .. 35

4.2: Theoretical Introduction ... 35

4.3: System Analysis .. 35

4.4: System Design ... 53

4.5: System Implementation ... 54

Conclusions and Future Work .. 58

References... 59

[3]

LIST OF TABLES

TABLE PAGE

Table 1 Sign Up Use Case .. 35

Table 2 Sign In Use Case ... 36

Table 3 Sign Out Use Case ... 37

Table 4 Edit Profile Use Case ... 37

Table 5 Search Use Case ... 38

Table 6 Save Search Results Use Case ... 38

Table 7 View History Use Case ... 39

Table 8 View Saved Search Operation Use Case ... 40

Table 9 Clear History Use Case .. 40

Table 10 Delete Saved Search Operation Use Case .. 41

[4]

LIST OF FIGURES
 FIGURE PAGE

Figure 1.1 Content Table ... 12

Figure 2.1 User Table .. 14

Figure 2.2 Country Table ... 14

Figure 2.3 Language Table ... 15

Figure 2.4 Skill Table ... 15

Figure 2.5 Organization Table ... 15

Figure 2.6 Degree Table ... 16

Figure 2.7 Major Table .. 16

Figure 2.8 Education Table ... 16

Figure 2.9 Job Table ... 17

Figure 2.10 Experience Table ... 17

Figure 2.11 Project Table .. 17

Figure 2.12 Course Table .. 18

Figure 2.13 Certificate Table ... 18

Figure 2.14 User Language Table ... 18

Figure 2.15 User Skill Table .. 19

Figure 2.16 User Course Table ... 19

Figure 2.17 User Certificate Table .. 19

Figure 3.1 Admin Table ... 23

Figure 3.2 Country Optimization Table .. 24

Figure 3.3 Industry Optimization Table.. 24

Figure 3.4 Job Optimization Table .. 25

Figure 3.5 Language Optimization Table .. 25

Figure 3.6 Major Optimization Table ... 26

Figure 3.7 Skill Optimization .. 26

Figure 3.8 Log In Form .. 27

Figure 3.9 Get Similarities Form .. 27

Figure 3.10 View Similarities Form .. 28

Figure 3.11 Country Errors Table .. 29

Figure 3.12 Industry Errors Table .. 30

Figure 3.13 Job Errors Table ... 30

[5]

Figure 3.14 Language Errors Table... 31

Figure 3.15 Major Errors Table ... 31

Figure 3.16 Skill Errors Table .. 32

Figure 3.17 Log In Form .. 33

Figure 3.18 Get Errors Form ... 33

Figure 3.19 View Errors Form ... 34

Figure 4.1 Use Case Diagram ... 42

Figure 4.2 Sign Up Sequence Diagram ... 43

Figure 4.3 Sign In Sequence Diagram .. 44

Figure 4.4 Sign Out Sequence Diagram .. 45

Figure 4.5 Edit Profile Sequence Diagram .. 46

Figure 4.6 Search Sequence Diagram .. 47

Figure 4.7 Save Search Results Sequence Diagram .. 48

Figure 4.8 View History Sequence Diagram .. 49

Figure 4.9 View Saved Search Operation Sequence Diagram 50

Figure 4.10 Clear History Sequence Diagram ... 51

Figure 4.11 Delete Saved Search Operation Sequence Diagram 52

Figure 4.12 Member Table .. 53

Figure 4.13 Role Table .. 53

Figure 4.14 Search Operation Table ... 54

Figure 4.15 Search History Table .. 54

Figure 4.16 Main Form .. 55

Figure 4.17 Search Form .. 55

Figure 4.18 Search Result Form ... 56

Figure 4.19 History Form ... 57

[6]

ABSTRACT

The invention of the World Wide Web made it possible to connect people all over the

world. A new style of employing web applications in communicating people is the on

line networks. The main concept in these networks is the “Sociality” i.e. linking

people with their community to exchange information, news, personal stuff and

whatever. We can’t ignore that this aspect of online network is urging people to have

a good digital figure and to generously share info, ideas and opinions. Facebook,

Twitter, Google+, YouTube and LinkedIn are the most popular examples of online

networks. These websites are becoming containers for huge piles of visual

information without having an ability to get benefit of them. The issue of our project is

creating that tool which can extract unstructured information used in online networks

and organize them in an appropriate structure to enable applying them in further

applications. To make it a specialized project we choose our case study to be

Linkedin.com.

[7]

INTRODUCTION

LinkedIn is the world's largest professional network with 225 million members in over

200 countries and territories around the globe. (1) The person who registers to this

website can publish his CV online to be viewed by anyone else. Not only people,

also companies can have profiles on LinkedIn. There are two types of profiles: Basic

profile which is free and Premium profile which is paid. Information can include

personal details, Education, Experiences, Skills, Courses, Interests and Certificates.

There’s also the ability to add connections (friends) and join groups.

Having this data in a well-structured format will enable to build useful applications.

Consider a situation in which a company manager wants to employ a new person

with specific characteristics, of course he can surf the network to find the efficient

individual but it will be easier if there’s a tool to search through CVs according to a

specified criteria. Another possible case is when an academy wants to advertise a

course, it can make a public advertisement but it will be more convenient to forward

the ad to those interested in the course’s study field. Data mining, One-to-One

marketing, Statistical Researches are also possible examples.

 In order to implement that, we need to move through 3 steps: First, obtain the data.

Second, extract information from that data. Third, manipulate information. This

documentation will explain in details these three phases of the system.

[8]

REFERNCE STUDIES

Extracting information from networks was and still an important topic for researchers

and software developers. In 2004, University of Massachusetts – Amherst published

a paper under the title “Extracting social networks and contact information from email

and the Web” by Aron Culotta, Ron Bekkerman and Andrew McCallum. This sheet

tells that they present an end-to-end system that extracts a user’s social network and

its members’ contact information given the user’s email inbox. The system identifies

unique people in email, finds their Web presence, and automatically fills the fields of

a contact address book using conditional random fields—a type of probabilistic

model well-suited for such information extraction tasks. By recursively calling itself

on new people discovered on the Web, the system builds a social network with

multiple degrees of separation from the user. Additionally, a set of expertise-

describing keywords are extracted and associated with each person. (2) Another

study was published in 2012 under the title “Extracting Information Networks from

the Blogosphere” by YUVAL MERHAV from Illinois Institute of Technology, FILIPE

MESQUITA and DENILSON BARBOSA from University of Alberta, WAI GEN YEE

from Orbitz Worldwide and OPHIR FRIEDER from Georgetown University. They say

that they study the problem of automatically extracting information networks formed

by recognizable entities as well as relations among them from social media sites.

Their approach consists of using state-of-the-art natural language processing tools to

identify entities and extract sentences that relate such entities, followed by using

text-clustering algorithms to identify the relations within the information network.

They describe an effective method for identifying benchmarks for open information

extraction that relies on a crated online database that is comparable to the hand-

crafted evaluation datasets in the literature. From this benchmark, they derive a

much larger dataset which mimics realistic conditions for the task of open information

extraction. They report on extensive experiments on both datasets, which not only

shed light on the accuracy levels achieved by state-of-the-art open information

extraction tools, but also on how to tune such tools for better results.(3)

Now, to speak about our project, the main idea was to create that tool which extracts

useful information from social online networks and specifically LinkedIn.com.

Recently, the use of the internet started to wide spread here, in Syria. And

organizations began to get benefit from available information on the World Wide

[9]

Web (WWW). Some companies, for example, headed for employing people

depending on their online data containing facts, details and whatever. This data can

be found in some popular websites such as LinkedIn.com where a person adds his

CV online listing his degrees, certificates, skills, and experiences. Starting from this

point, we found it important to take advantage of this published information by

making it well organized and searchable, not only that, but also in a form that

enables to build any useful application.

[10]

Chapter One

Obtaining Data

1.1 Overview:

In this chapter we will cover how to obtain data from Linked In and save them

temporarily in a data base table.

1.2 Methodologies, Problems and solutions:

In order to pull data from the Linked In website we can use the Profile API provided

by the website itself. So, what is API? What is the Profile API?

API (or Application Program Interface) is an interface that a specific website offers

for developers to write their own applications on the website data without having to

understand the inner working of the website or directly communicate with the

website database. It guarantees simplicity for the developer and security for the

website owner.

The Profile API is provided by Linkedin.com and returns a member's LinkedIn profile.

We can use this call to return one of two versions of profile: Standard or Public.

Examples of possible returned fields are: Name, headline, industry and so on.

Retrieved data can be in one of two formats either XML or JSON.
 (4)

The first step to start developing is registering the application; after that Linked In

uses the OAuth 1.0a protocol to give the application authorized access to the APIs.
 (5)

And for this reason we need to use a library that allows using this protocol in a

certain programming language (C# in our case). There are many libraries for this

purpose but all of them are a “geek work” which means they are not supported by a

known organization or company.

Some instances are DotNetOpenAuth, OAuth library for .NET and DevDefined OAuth.

Unfortunately, we have tried each one of them and more but no one has worked

out! The problem was that they have neither simple clear documentation nor stable

releases. And so we were in a big trouble! To overcome this problem we decided to

switch to another retrieving method which depends on HTML Parsing.

HTML Parsing is a technique with which we can move around a HTML file and extract

text from it. First we will pull profiles HTML code from the Linked In website and

[11]

store it in a database table to avoid snags like internet connection abruption and loss

of data. Explanation of procedure and used techniques is coming.

1.3 System Analysis:

To continuously collect as many profiles data as possible we have followed this

procedure.

Procedure:

• First step:

o Download the source code of a specific profile and store it in the

database.

o For that profile, download other suggested profiles and store them in

the database.

• Second step:

Randomly select a profile saved in the database and for that profile,

download other suggested profiles and store them in the database.

1.4 Technical Details:

We have used the HTML Agility Pack library to navigate through each profile and

extract other suggested profiles links. The language used here was XPATH.

HTML Agility Pack is an agile HTML parser that builds a read/write DOM and

supports plain XPATH or XSLT. It is a .NET code library that allows you to parse "out

of the web" HTML files. The parser is very tolerant with "real world" malformed

HTML. The object model is very similar to what proposes System.Xml, but for HTML

documents (or streams).
(6)

XPATH is used to iterate and access any node within a XML document. Different

functions and expressions are available within XPath specifications to help access

different kind of XML nodes. HTML Agility pack uses XPath to access any of node

within a HTML document.
(7)

[12]

1.5 System Design:

We have used three-layer architecture, one layer for the database tables, another

one for the process and third one for the interface.

Applying this architecture, offers these benefits:

• Ensuring the security of the database by preventing access to the tables from

the user interfaces.

• Specialization of layers’ work so the tasks are easily broken-down.

• Ease of modification. Changes in one layer should not have an impact onto

other layers.

 Figure 1.1 shows the database design.

The Content Table stores pulled HTML documents; it contains id field as a primary

key and URL and page content fields which represent the address and the code for

each saved profile.

Figure 1.1 Content Table

1.6 System Implementation:

Used Techniques:

• Microsoft SQL Server 2005

• Visual C# with Microsoft Visual Studio 2010

• LINQ to SQL

• HTML Agility Pack

• XPATH

We have used the techniques listed above and built a system which actually has

gained more than 10,000 Profile!!!

[13]

Chapter Two

Extracting Information

2.1 Overview:

In this chapter we will cover how to extract data from the saved profiles and store

them in a new database.

2.2 Theoretical Introduction:

In this phase of our project we need to extract useful information from the stored

profiles, why? Simply because the received html code is not in a well structured

format that allows applying manipulation techniques to it! So, again we have to use

HTML Agility Pack Library and XPATH (both explained in the previous chapter) to

navigate through the profiles’ HTML code and mine meaningful text from within

large number of meaningless html nodes.

2.3 System Analysis:

To achieve our task of surfing all profiles’ code we need to pull that code from the

database and process it. We used I/O File storage method to keep the last reached

profile id so we can pause the system and resume it anytime, anywhere.

Procedure:

• For the reached user id, load the source code of the corresponding profile.

• Extract the information and store them in the database.

• Increment reached user id and store it in the file.

• Read reached user id from the file, if it’s smaller than total number of stored

user profiles then repeat procedure, else terminate.

2.4 System Design:

We have used three-layer architecture, one layer for the database tables, another

one for the process and third one for the interface.

[14]

Database Tables:

• User Table: this table stores the basic information found in a person’s profile,

it contains user_id field as a primary key, location_id field as a foreign key to

the Country Table and other fields for some information about the user. (as

shown in figure 2.1)

Figure 2.1 User Table

• Country Table: this table stores names of different locations in the world that

were found while visiting users’ profiles, it contains country_id field as a

primary key, country_name field and date field to save the time of insertion.

(as shown in figure 2.2)

Figure 2.2 Country Table

• Language Table: this table stores different languages found while visiting

users’ profiles, it contains lang_id field as a primary key, lang_name field and

date field to save the time of insertion. (as shown in figure 2.3)

[15]

Figure 2.3 Language Table

• Skill Table: this table stores different skills found while visiting users’ profiles,

it contains skill_id field as a primary key, skill_name field and date field to

save the time of insertion. (as shown in figure 2.4)

Figure 2.4 Skill Table

• Organization Table: this table stores names of different organizations in the

world that were found while visiting users’ profiles, it contains org_id field as

a primary key, location_id field as a foreign key to the Country Table and

org_name field. (as shown in figure 2.5)

Figure 2.5 Organization Table

• Degree Table: this table stores extracted degrees which a person can have, it

contains degree_id field as a primary key and degree_name field. (as shown

in figure 2.6)

[16]

Figure 2.6 Degree Table

• Major Table: this table stores extracted majors which a person can have, it

contains major_id field as a primary key, major_name field and date field to

save the time of insertion. (as shown in figure 2.7)

Figure 2.7 Major Table

• Education Table: this table stores information about a user’s education, it

contains education_id field as a primary key, user_id field as a foreign key to

the User Table, org_id field as a foreign key to the Organization Table,

degree_id field as a foreign key to the Degree Table, Major_id field as a

foreign key to the Major Table and start_date and end_date fields to

represent the duration of that education record. (as shown in figure 2.8)

Figure 2.8 Education Table

• Job Table: this table stores extracted job titles which a person can have, it

contains job_id field as a primary key, job_name field and date field to save

the time of insertion. (as shown in figure 2.9)

[17]

Figure 2.9 Job Table

• Experience Table: this table stores information about a user’s experience, it

contains experience_id field as a primary key, user_id field as a foreign key to

the User Table, org_id field as a foreign key to the Organization Table, job_id

field as a foreign key to the Job Table, description field and start_date and

end_date fields to represent the duration of that experience record. (as

shown in figure 2.10)

Figure 2.10 Experience Table

• Project Table: this table stores information about a user’s projects, it contains

project_id field as a primary key, user_id field as a foreign key to the User

Table and other fields for some information about the project. (as shown in

figure 2.11)

Figure 2.11 Project Table

[18]

• Course Table: this table stores names of possible courses a person can list in

his profile, it contains course_id field as a primary key and course_name field.

(as shown in figure 2.12)

Figure 2.12 Course Table

• Certificate Table: this table stores names of possible certificates a person can

list in his profile, it contains cert_id field as a primary key and cert_name

field. (as shown in figure 2.13)

Figure 2.13 Certificate Table

• User_Language Table: this table stores a certain user’s languages; it contains

user_language_id field as a primary key, user_id field as a foreign key to the

User Table and lang_id field as a foreign key to the Language Table. (as shown

in figure 2.14)

Figure 2.14 User Language Table

• User_Skill Table: this table stores a certain user’s skills; it contains

user_skill_id field as a primary key, user_id field as a foreign key to the User

Table and skill_id field as a foreign key to the Skill Table. (as shown in figure

2.15)

[19]

Figure 2.15 User Skill Table

• User_Course: this table stores a certain user’s courses; it contains

user_course_id field as a primary key, user_id field as a foreign key to the

User Table, course_id field as a foreign key to the Course Table and org_id

field as a foreign key to the Organization Table. (as shown in figure 2.16)

Figure 2.16 User Course Table

• User_Certificate: this table stores a certain user’s certificates; it contains

user_cert_id field as a primary key, user_id field as a foreign key to the User

Table, cert_id field as a foreign key to the Certificate Table and org_id field as

a foreign key to the Organization Table. (as shown in figure 2.17)

Figure 2.17 User Certificate Table

2.5 System Implementation:

Used Techniques:

• Microsoft SQL Server 2005

• Visual C# with Microsoft Visual Studio 2010

[20]

• LINQ to SQL

• HTML Agility Pack

• XPATH

We have used the techniques listed above and built a system which actually has

stored the extracted information for all the 10,000 gained Profiles.

[21]

Chapter Three

Optimizing Data

3.1 Overview:

In this chapter we will cover how to optimize extracted data.

3.2 Theoretical Introduction:

Since the data in our project belongs to a huge number of profiles, it’s normal to face

problems while manipulating it, e.g. dissimilar phrases with the similar meaning like

“Computer Software Engineering” and “Software Engineer” (which can be used to

describe the person’s job) can cause troubles in a search process. Another possible

problem is misspelling i.e. having a syntax error in the text like writing “Engilsh”

instead of “English” when listing the person’s language. In order to solve such

problems we had to use some existing techniques and theories that serve our

purpose. Details are coming.

3.3 Semantic Similarity:

3.3.1 Methodologies, Techniques and Procedures:

Finding a way to determine the degree of semantic similarity between two

phrases can help to handle issues concerning different expressions with the same

meaning.

There is an open source C# library called “Open NLP” provides a procedure that

tokenizes an input sentence i.e. converts it to a list of words and then removes

stop words from that list (stop words are useless terms like prepositions and

determiners) and another procedure to calculate the semantic similarity

between two words. So, our task is to build a layer above those available

procedures to calculate the semantic similarity between two sentences and this

is easily done by tokenizing the two input phrases (using the first procedure) and

finding the ratio of similarity between each two words of the tokenized phrases

[22]

(using the second procedure). At the end our goal is represented by the mean of

all computed values.

But how all of that is achieved?

Open NLP depends on a database known as “WordNet”.

WordNet® is a large lexical database of English. Nouns, verbs, adjectives and

adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a

distinct concept. Synsets are interlinked by means of conceptual-semantic and

lexical relations. The resulting network of meaningfully related words and

concepts can be navigated with the browser. WordNet is also freely and publicly

available for download. WordNet's structure makes it a useful tool for

computational linguistics and natural language processing.
 (8)

The relations between different (synsets) vary based on the type of word. For

nouns we have:

� hypernyms: Y is a hypernym of X if every X is a (kind of) Y (canine is a

hypernym of dog)

� hyponyms: Y is a hyponym of X if every Y is a (kind of) X (dog is a

hyponym of canine)

� coordinate terms: Y is a coordinate term of X if X and Y share a

hypernym (wolf is a coordinate term of dog, and dog is a coordinate

term of wolf)

� holonym: Y is a holonym of X if X is a part of Y (building is a holonym

of window)

� meronym: Y is a meronym of X if Y is a part of X (window is a

meronym of building)
 (9)

Now, we can use these relations to compute the semantic distance between two

words by measuring the distance between the two corresponding nodes in the

WordNet Network and the ratio of the similarity can then be calculated by one of

these equations:

� Sim(s, t) = 1/distance(s, t)

� Sim(s, t) = SenseWeight(s)*SenseWeight(t)/PathLength; where:

[23]

• s and t: denote the source and target words being compared.

• SenseWeight: denotes a weight calculated according to the

frequency of use of this sense and the total of frequency of

use of all senses.

• PathLength: denotes the length of the connection path from s

to t.

In our project we have used the latter one.

3.3.2 System Analysis:

 We have two concerns, the first one to calculate semantic similarity between

each two phrases and if the ratio of similarity is high store the result in a

database table for further checking.

The second is to view the saved phrases’ similarities and let admins decide to

either accept or refuse the result.

The process here doesn’t affect the original data; it only improves the data

manipulation tasks (in particular, the search operation described in the next

chapter).

Security here is achieved by the mandatory logging in step.

3.3.3 System Design:

In addition to previous database tables we have added these tables to

manage logging in and optimization process.

Database Tables:

• Admin Table: this table stores admins’ logging in credentials, it contains

admin_id field as a primary key, admin_name field and admin_password

field. (as shown in figure 3.1)

Figure 3.1 Admin Table

[24]

• Country_Opt Table: this table stores semantic similarity suggestions found for

a certain country name, it contains rec_id field as a primary key, admin_id

field as a foreign key to the Admin Table, country_old, country_new and

country_selected fields as foreign keys to the Country Table, ratio field and

date field to save the time of acceptance. (as shown in figure 3.2)

Figure 3.2 Country Optimization Table

• Industry_Opt Table: this table stores semantic similarity suggestions found

for a certain user’s industry description, it contains rec_id field as a primary

key, admin_id field as a foreign key to the Admin Table, industry_old,

industry_new and industry_selected fields as foreign keys to the User Table,

ratio field and date field to save the time of acceptance. (as shown in figure

3.3)

Figure 3.3 Industry Optimization Table

• Job_Opt Table: this table stores semantic similarity suggestions found for a

certain job title, it contains rec_id field as a primary key, admin_id field as a

foreign key to the Admin Table, job_old, job_new and job_selected fields as

[25]

foreign keys to the Job Table, ratio field and date field to save the time of

acceptance. (as shown in figure 3.4)

Figure 3.4 Job Optimization Table

• Language_Opt Table: this table stores semantic similarity suggestions found

for a certain language name, it contains rec_id field as a primary key,

admin_id field as a foreign key to the Admin Table, lang_old, lang_new and

lang_selected fields as foreign keys to the Language Table, ratio field and

date field to save the time of acceptance. (as shown in figure 3.5)

Figure 3.5 Language Optimization Table

• Major_Opt Table: this table stores semantic similarity suggestions found for a

certain major name, it contains rec_id field as a primary key, admin_id field

as a foreign key to the Admin Table, major_old, major_new and

major_selected fields as foreign keys to the Major Table, ratio field and date

field to save the time of acceptance. (as shown in figure 3.6)

[26]

Figure 3.6 Major Optimization Table

• Skill_Opt Table: this table stores semantic similarity suggestions found for a

certain skill name, it contains rec_id field as a primary key, admin_id field as a

foreign key to the Admin Table, skill_old, skill_new and skill_selected fields as

foreign keys to the Skill Table, ratio field and date field to save the time of

acceptance. (as shown in figure 3.7)

Figure 3.7 Skill Optimization

3.3.4 System Implementation:

Used Techniques:

• Microsoft SQL Server 2005

• Visual C# with Microsoft Visual Studio 2010

• LINQ to SQL

• WordNet

• Open NLP

Now, we have a system with which an admin can log in, start getting similarities and

then view these values to make a decision about them.

[27]

As we tried the comparing process on some testing examples we found out that the

ratio 90% is suitable to our project because it’s enough to demonstrate a semantic

relation between two phrases. Consequently, the system should retain the result

having a ratio of 90% or more to take them in consideration and regard the rest.

And this is what we have actually done.

Interfaces:

• Log IN Form: The form used by the admin to log in. (shown in figure 3.8)

Figure 3.8 Log In Form

• Get Similarities Form: The form used by the admin to get similarities. (shown

in figure 3.9)

Figure 3.9 Get Similarities Form

[28]

• View Similarities Form: The form used by the admin to view similarities and

make a decision about them. (shown in figure 3.10)

Figure 3.10 View Similarities Form

3.4 Spell Checking:

3.4.1 Hunspell Checker:

Hunspell is a spell checker and morphological analyzer designed for languages

with rich morphology and complex word compounding and character encoding.

It’s is an open software and can use Unicode UTF-8-encoded dictionaries.
 (10)

Hunspell is the spell checker of LibreOffice, OpenOffice.org, Mozilla Firefox 3 &

Thunderbird, Google Chrome, and it is also used by proprietary software

packages, like Mac OS X, InDesign, memoQ, Opera and SDL Trados.

Main features:

• Extended support for language peculiarities; Unicode character encoding,

compounding and complex morphology.

• Improved suggestion using n-gram similarity, rule and dictionary based

pronunciation data.

• Morphological analysis, stemming and generation.

And more!
 (11)

[29]

3.4.2 System Analysis:

We have two concerns; the first one is using the Hunspell Checker to find

suggestions to wrong values.

The second is to view the found suggestions and let admins decide to either

accept or refuse the result.

The process here affects the original data;

Security here is achieved by the mandatory logging in step.

3.4.3 System Design:

In addition to previous database tables we have added these tables to spell-checking

process.

Database Tables:

• Country_Err Table: this table stores syntax errors’ possible corrections found

for a certain country name, it contains rec_id field as a primary key, admin_id

field as a foreign key to the Admin Table, country_id field as a foreign key to

the Country Table, suggestions field, selected field and date field to save the

time of acceptance. (as shown in figure 3.11)

Figure 3.11 Country Errors Table

• Industry_Err Table: this table stores syntax errors’ possible corrections found

for a certain user’s industry description, it contains rec_id field as a primary

key, admin_id field as a foreign key to the Admin Table, industry_id field as a

foreign key to the User Table, suggestions field, selected field and date field

to save the time of acceptance. (as shown in figure 3.12)

[30]

Figure 3.12 Industry Errors Table

• Job_Err Table: this table stores syntax errors’ possible corrections found for a

certain job title, it contains rec_id field as a primary key, admin_id field as a

foreign key to the Admin Table, job_id field as a foreign key to the Job Table,

suggestions field, selected field and date field to save the time of acceptance.

(as shown in figure 3.13)

Figure 3.13 Job Errors Table

• Language_Err Table: this table stores syntax errors’ possible corrections

found for a certain language name, it contains rec_id field as a primary key,

admin_id field as a foreign key to the Admin Table, language_id field as a

foreign key to the Language Table, suggestions field, selected field and date

field to save the time of acceptance. (as shown in figure 3.14)

[31]

Figure 3.14 Language Errors Table

• Major_Err Table: this table stores syntax errors’ possible corrections found

for a certain major name, it contains rec_id field as a primary key, admin_id

field as a foreign key to the Admin Table, major_id field as a foreign key to

the Major Table, suggestions field, selected field and date field to save the

time of acceptance. (as shown in figure 3.15)

Figure 3.15 Major Errors Table

• Skill_Err Table: this table stores syntax errors’ possible corrections found for a

certain skill name, it contains rec_id field as a primary key, admin_id field as a

foreign key to the Admin Table, skill_id field as a foreign key to the Skill Table,

suggestions field, selected field and date field to save the time of acceptance.

(as shown in figure 3.16)

[32]

Figure 3.16 Skill Errors Table

3.4.4 System Implementation:

Used Techniques:

• Microsoft SQL Server 2005

• Visual C# with Microsoft Visual Studio 2010

• LINQ to SQL

• Hunspell Checker

Now, we have a system with which an admin can log in, start getting syntax errors

and then view these values to make a decision about them.

Here, replacing values is permanent and so admins should be sure before they

decide to change values.

Interfaces:

• Log IN Form: the form used by the admin to log in. (shown in figure 3.17)

[33]

Figure 3.17 Log In Form

• Get Errors Form: The form used by the admin to get syntax errors. (shown in

figure 3.18)

Figure 3.18 Get Errors Form

• View Errors Form: The form used by the admin to view syntax errors and

make a decision about them. (shown in figure 3.19)

[34]

Figure 3.19 View Errors Form

[35]

Chapter Four

Search System

4.1 Overview:

In this chapter we will cover how to make processed information available for

search.

4.2 Theoretical Introduction:

After we manipulated the data and optimized it as much as we could; now the data

is ready to be fed into any meaningful transformation process to make it more useful

to us.

One of important applications that we can create is a search system that allows

looking for a person (i.e. profile) that satisfies a list of characteristics the searcher

specifies.

Once a member registers to the search website we have developed, he has the

ability to search through profiles, save the search results and view his search history.

4.3 System Analysis:

As a result of The Search System analysis we made, we obtained this list of use cases.

Use Cases:

Table 1 Sign Up Use Case

1 Use Case Number

Sign Up. Use Case Name

Primary: Anonymous member.

Secondary: None.

Actors

Sign In. Included Use Case

Register a new member. Description

None. Preconditions

1 – The member enters values for the

member name and passwords fields.

2 – The system registers a new member

Main Flow

[36]

in the website.

3 – Include Sign In.

1.1 – If the member didn’t enter each

field then the system notifies him.

1.2 – If the two passwords mismatch the

system shows an error message.

1.3 – If any value exceeds 50 characters

the system shows an error message.

Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 2 Sign In Use Case

2 Use Case Number

Sign In. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Sign in a member to the website. Description

The member is registered. Preconditions

1 – The member enters values for the

member name and password fields.

2 – The system signs in the member.

Main Flow

1.1 – If the member didn’t enter each

field then the system notifies him.

1.2 – If the values are incorrect the

system shows an error message.

Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

[37]

Table 3 Sign Out Use Case

3 Use Case Number

Sign Out. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Sign out a member from the website. Description

The member is signed in. Preconditions

1 – The member clicks on (sign out) link.

2 – The system signs out the member

from the website.

Main Flow

None. Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 4 Edit Profile Use Case

4 Use Case Number

Edit Profile. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Edit a member’s profile. Description

The member is signed in. Preconditions

1 – The member enters values for the

member name and passwords fields.

2 – The system updates the member’s

profile.

Main Flow

1.1 – If the two passwords mismatch the

system shows an error message.

1.2 – If any value exceeds 50 characters

the system shows an error message.

Alternative Flow

[38]

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 5 Search Use Case

5 Use Case Number

Search. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Search for people who satisfy the

member’s customized criteria.

Description

The member is signed in. Preconditions

1 – The member enters values for the

fields he wants to set the search criteria.

2 – The system search for people who

satisfy the search criteria.

3 – If any search result, the system

shows a table containing the name of the

person associated with the link to his

profile and other information.

Main Flow

1.1 – If the member didn’t enter any field

then the system notifies him.

3.1 – If there’s no search result, the

system shows a message to explain.

Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 6 Save Search Results Use Case

6 Use Case Number

Save Search Results. Use Case Name

[39]

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Save Search Results for future. Description

The member is signed in. Preconditions

1 – The member chooses to save the

search results.

2 – The system saves the search results

in the member’s history.

Main Flow

None. Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 7 View History Use Case

7 Use Case Number

View History. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

View the member’s saved history. Description

The member is signed in. Preconditions

1 – The system views the saved history

with a link to each search operation to

view its search results and a choice to

delete it.

Main Flow

1.1 – If the user didn’t save any search

results before nothing is viewed.

Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

[40]

Table 8 View Saved Search Operation Use Case

8 Use Case Number

View Saved Search Operation. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

View saved search operation results. Description

The member is signed in. Preconditions

1 – The member chooses from the

history a search operation to view its

search results.

2 – The system shows saved results.

Main Flow

None. Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

Table 9 Clear History Use Case

9 Use Case Number

Clear History. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Clear member’s saved history. Description

The member is signed in. Preconditions

1 – The member chooses to clear all

history.

2 – The system deletes the saved

history.

Main Flow

None. Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

[41]

Table 10 Delete Saved Search Operation Use Case

10 Use Case Number

Delete Saved Search Operation. Use Case Name

Primary: Website Admin, Registered

member.

Secondary: None.

Actors

Delete one search operation from a

member’s saved history.

Description

The member is signed in. Preconditions

1 – The member chooses the saved

search operation to delete.

2 – The system deletes that operation.

Main Flow

None. Alternative Flow

None. Post Conditions

Internet connection is lost by either the

user or the system.

Exceptions

[42]

Use Case Diagram: we have three actors: Anynoumous Member, Registered Member and

Website Admin. (as shown in figure 4.1)

Figure 4.1 Use Case Diagram.

[43]

Sequence Diagrams:

• Figure 4.2 shows the Sign Up Sequence Diagram.

Figure 4.2 Sign Up Sequence Diagram

[44]

• Figure 4.3 shows the Sign In Sequence Diagram.

Figure 4.3 Sign In Sequence Diagram

[45]

• Figure 4.4 shows the Sign Out Sequence Diagram.

Figure 4.4 Sign Out Sequence Diagram

[46]

• Figure 4.5 shows the Edit Profile Sequence Diagram.

Figure 4.5 Edit Profile Sequence Diagram

[47]

• Figure 4.6 shows the Search Sequence Diagram.

Figure 4.6 Search Sequence Diagram

[48]

• Figure 4.7 shows the Save Search Results Sequence Diagram.

Figure 4.7 Save Search Results Sequence Diagram

[49]

• Figure 4.8 shows the View History Sequence Diagram.

Figure 4.8 View History Sequence Diagram

[50]

• Figure 4.9 shows the View Saved Search Operation Sequence Diagram.

Figure 4.9 View Saved Search Operation Sequence Diagram

[51]

• Figure 4.10 shows the Clear History Sequence Diagram.

Figure 4.10 Clear History Sequence Diagram

[52]

• Figure 4.11 shows the Delete Saved Search Operation Sequence Diagram.

Figure 4.11 Delete Saved Search Operation Sequence Diagram

[53]

4.4 System Design:

In addition to previous database tables we have added these tables to manage

search operation.

Database Tables:

• Member Table: this table stores a registerd member’s logging in credentials,

it contains member_id field as a primary key, role_id field as a foreign key to

the Role Table, member_name field and member_password field. (as shown

in figure 4.12)

Figure 4.12 Member Table

• Role Table: this table stores possible roles that different registered member

can get e.g. admin or normal user; it contains role_id field as a primary key

and role_name field. (as shown in figure 4.13)

Figure 4.13 Role Table

• Searchop Table: this table stores search operations done by a specific

member, it contains searchop_id field as a primary key, member_id field as a

foreign key to the Member Table, date field and query field. (as shown in

figure 4.14)

[54]

Figure 4.14 Search Operation Table

• Searchhistory Table: this table stores the results of a specific saved search

operation, it contains searchop_id field as a foreign key to the Searchop Table

and user_id field as a foreign key to the User Table. (as shown in figure 4.15)

Figure 4.15 Search History Table

4.5 System Implementation:

Used Techniques:

• Microsoft SQL Server 2005

• Visual C# with Microsoft Visual Studio 2010

• LINQ to SQL

Now we have a website to search through stored CVs.

Interfaces:

• Main Form: The first form displayed to the member. (shown in figure 4.16)

[55]

Figure 4.16 Main Form

• Search Form: The form used by the member to search. (shown in figure 4.17)

Figure 4.17 Search Form

[56]

• Search Result Form: The form that displays the search result. (shown in figure

4.18)

Figure 4.18 Search Result Form

[57]

• History Form: The form that displays the History. (shown in figure 4.19)

Figure 4.19 History Form

[58]

Conclusions and Future Work

Conclusions:

 Online networks are a repository of massive quantity of useful information.

Unluckily we cannot get benefit of it because it’s in a text format. Mining in these

texts, Finding the exciting information and organizing it in a machine-readable

format are considered a genius step towards building smart applications.

 While manipulating large amounts of data it’s possible to have several types of

problems. The critical point here is to figure out efficient and effective manners

to face those problems.

 As Edison said: “I start where the last man left off.” it’s a common trend in the

software development to build systems implicating existing software units. In our

project we used various available libraries to construct the product by

assembling ready-made units together.

 Future Work:

Here are some ideas to improve this system:

� Since the system deals with a huge quantity of data an important future work is

to make it distributed application so the work can be divided between multiple

servers which results in a faster processing.

� During the software development we have always tried to minimize the time it

takes to perform required arithmetic calculations and logical comparisons.

However, the consumed time was still very long due to huge quantity of the

input data, so, it’s a good thing to stay searching for less-complexity algorithms.

� It’s possible to use GOOGLE Map API in the Semantic Similarity calculating step to

find similarities among data representing locations (countries and cities).

� This software was developed to organize extracted data in an appropriate

structure to enable applying it in further applications. One of these applications

was the search engine we have created but there still a lot of projects that can be

built upon our well structured database. Examples are Data mining systems, One-

to-One marketing websites and Statistical researches.

[59]

REFERENCES

1. About. LinkedIn. [Online] [Cited: 2 26, 2013.] http://www.linkedin.com/about-us.

2. Aron Culotta, Ron Bekkerman and Andrew McCallum. Extracting social networks and

contact information. s.l. : University of Massachusetts - Amherst, 2004.

3. YUVAL MERHAV, FILIPE MESQUITA, DENILSON BARBOSA,WAI GEN YEE and

OPHIR FRIEDER. Extracting Information Networks from the Blogosphere. s.l. : Georgetown

University, 2012.

4. Profile API. LinkedIn Developers. [Online] [Cited: 2 26, 2013.]

https://developer.linkedin.com/documents/profile-api.

5. Authentication. LinkedIn Developers. [Online] [Cited: 2 26, 2013.]

https://developer.linkedin.com/documents/authentication.

6. HTML Agility Pack. CodePlex. [Online] [Cited: March 07, 2013.]

http://htmlagilitypack.codeplex.com.

7. HTML Parsing in C# using HTML Agility Pack. Code Problem. [Online] [Cited: March 07,

2013.] http://www.codeproblem.com/articles/languages/81-net-framework/74-html-parsing-

in-c-using-html-agility-pack.

8. About WordNet. Princeton University. [Online] [Cited: June 4, 2013.]

http://wordnet.princeton.edu.

9. WordNet. Wikipedia, the free encyclopedia. [Online] [Cited: June 04, 2013.]

http://en.wikipedia.org/wiki/WordNet.

10. Hunspell. Wikipedia, the free encyclopedia. [Online] [Cited: July 29, 2013.]

http://en.wikipedia.org/wiki/Hunspell.

11. Hunspell. SourceForge. [Online] [Cited: july 28, 2013.] http://hunspell.sourceforge.net/.

