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Abstract— In this paper, to achieve correct execution
of peer-to-peer applications on non-reliable resources, we
present a portable and distributed algorithm that provides
fault tolerance and result checking. Two kinds of faults
are considered: node failure or disconnection and result
forgery. This algorithm is based on the knowledge of the
macro dataflow dependencies beween the application tasks.
It provides correct execution with respect to a probabilistic
certificate. We have implemented it on top of Athapascan
programming interface and experimental results are pre-
sented.
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I. I NTRODUCTION

LA rge scale distributed platforms, such as the
GRID and Peer-to-Peer computing systems,

gather thousands of nodes for computing parallel ap-
plications. At this scale, component failures, discon-
nections or results modifications are part of operation,
and applications have to deal directly with repeated
failures during program runs.

In this paper, we consider a large scale distributed
platform where a secure system architecture such as
Globus [10], [11] is deployed. Allocations of the re-
sources to the application is performed almost trans-
parently to the user; the user submits its parallel ap-
plication described as a set of tasks together with
their dependencies. Moreover, to compete intrusion,
the system provides strong authentication and secure
communications. However, guaranteing the result of
a parallel program execution is still an open problem.
Indeed, even on such a secure environnement, two
kinds of failures are distinguished.
• node failures and disconnections: To ensure re-
silience of the application, fault tolerance mecha-

nisms are to be used. For the sake of scalability,
a global distributed consistent state is needed; it is
obtained from both checkpointing locally each se-
quential process and logging their dependencies (e.g.
communications in MPICH-V[5] or Egida[20] pre-
sented in§II-A).
• Task forgery: the program is executed on a remote
resource (also calledworker in the sequel) and its
expected output results may be modified on this re-
source with no control of the client application. In all
this paper, a task is saidforged (or faked) when its
output results are different than the results it would
have delivered if executed on an equivalent resource
but under the full control of the client.
Task forgery may of course occur when the remote re-
source is the victim of a trojan horse that emulates the
behaviour of a correct system for the outside. How-
ever there are more pernicious situations. Histori-
cally, the first infrastructure which highlighted task
forgery issues was the SETI@Home project [26], [1]
in 1999. Whereas the project succeeded beyond the
wildest dreams of its creators, people who believed
the SETI@Home client software too slow decided to
provide a patch to makes the client faster; this unde-
tected modification leaded to unusable results [18].

Since hardware approaches are not suited to the
case of peer-to-peer computing platforms made of
off-the-shelf standard components, managing failures
is performed at the software level. Tasks that are de-
tected failed are recomputed till correctness of the full
execution. Since tasks in a peer-to-peer parallel appli-
cation are mobile, the macro data flow that represents
the tasks and their logical dependencies is known at
least implicitly; the macro-dataflow is even explicit in
some programming environments such as Jade [22]



or Athapascan [12].
In this paper, using the knowledge of the macro

dataflow, we propose an unified framework to tackle
both node failures and tasks forgery in a peer-to-
peer parallel application. Indeed, assuming the ex-
istence of at least one trusted machine (also called
oracle) and extending previous works in PORCH
and MPICH-V (§II), the checkpointing of the macro
dataflow provides a distributed portable global con-
sistent state (§III). In section IV-B, we detail an asyn-
chronous recovery algorithm based on this check-
pointing.

Furthermore, taking benefit of analysis of data de-
pendencies, we propose in section V-D a correction
algorithm that provides a certification of the full ap-
plication.

More precisely, we consider a peer-to-peer applica-
tion G0 composed withn tasks (orjobs) with depen-
dencies: the inputs of those tasks can be produced by
other tasks and their outputs can eventually be con-
sumed by other tasks. Since all workers are anony-
mous in a peer-to-peer platform, we assume that the
result of a given task is forged with a probability
q ∈]0, 1[ and the forgeries between two distinct tasks
are assumed independent : this hypothesis is reason-
able as it introduces no restriction on the kind of sab-
otage that may be performed. Also, if the number of
tasks is large, the distribution of errors can be mod-
elled as a Bernouilli distribution.

Using the checkpointing of the dataflow, we pro-
pose in section V-A an algorithm that implements the
probabilistic forgery detection test introduced in [28].
This test is based on duplication of randomly chosen
tasks on trusted machines (oracles); communications
and computations on oracles are assumed as totally
reliable. Thus, if oracles are used in an hypothesis
test and ifα is the risk of first kind (false alarm) in
the oracle answer, then it is assumed thatα = 0.

The number of duplicated tasks required for certi-
fication is limited. Indeed, letε be an arbitrary thresh-
old, fixed by the user, that bounds the probability of
considering correct an application while it is forged
Then, the number of duplicated tasks required by our
certification algorithm isfε,q = ln[(1−q)n(1−ε)+ε]

ln(1−q)
which

is quickly negligible whenn is large.
Our certification algorithm improves previous re-

sults on fault tolerance for peer-to-peer computa-
tions (cf §II). Concerning checkpoint/recovery, our
mechanism brings portability; it supports heteroge-

neous nodes including symmetrical multi-processors.
Concerning result checking, it extends previous ap-
proaches that are restricted to independent tasks and
that define certification of a task with respect to the
reliability of the resource where it is executed.

In order to evaluate the overhead of the proposed
certification algorithm, we have implemented it on
top of Athapascan [23]. Section VI comments the
experimental measures, exhibiting that the overhead
of the certification is small for a peer-to-peer parallel
application with middle-grain tasks.

II. RELATED WORK

In this section, we overview works on Fault-
Tolerance and Result Checking in the software frame-
work.

A. Fault-Tolerance by checkpointing

The study of fault tolerance mechanisms suited to
peer-to-peer platforms is an active field of research
[5], [14], [7], [16], [20], [9]. Namely two categories
of applications are considered:

• independent jobs, like in the Condor [27] batch
system: the application is a set of independent se-
quential jobs, each job being a process which may be
dynamically created. The related fault tolerant mech-
anism [15] then consists in checkpointing each se-
quential process independently. This approach sup-
ports addition and resilience of resources, but is re-
stricted to jobs without dependencies.
• applications based on message passing, most of-
ten developped with MPI or PVM.. The number
of processors is fixed at the starting of the execu-
tion and the application consists in a fixed num-
ber of communicating processes. In MPICH-V [5],
each MPI process is checkpointed independently at a
given coordinated checkpoint [9]; to build a consis-
tent global state, all communications performed by
any process are logged [2]. Egida [20], provides a
toolkit for PVM applications to support fault toler-
ance; this toolkit similarly enables the checkpointing
of a global consistent state. In both MPICH-V and
Egida, the checkpoint/recovery algorithm requires a
memory space large enough to store all communica-
tion events between two checkpoints. Here, the re-
covery consists in replacing a failure node by a new
node; but addition or resilience of resources is not
supported.
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Both cases are based on a memory core of each se-
quential process; also, they do not currently support
neither restart on heterogeneous nodes nor check-
point of concurrent multithreaded processes within a
single process.

In order to deal with heterogeneous resources, a
portable fault tolerant mechanism should be consid-
ered. In Porch [25], such a portable checkpoint is
proposed for sequential architectures; it is based on
the log of the procedure call stack (identity of the
successive called procedures, values of their effective
parameters and local variables).

Also, the satck describned a sequential consistent
state. Thanks to the use of the Macro-Data Flow rep-
resentation, we propose to extend this log mechanism
to build a distributed and portable global consistent
state.

However, the results of the application remain to
be checked. Related works on result checking are ex-
pounded in the next section.

B. Result Checking

The execution of the application provides results
that have to be checked. Basically, software certifica-
tion consists in adding informations to the execution
to accept/refuse the result(s) of the jobs. The objec-
tive is to minimize the certification cost, with a prob-
ability of certification error> 0 (as this is a software
certification).

Software approaches for the certification of execu-
tion can be divided in two categories:
1. ”simple checkers” [3] : for some computations,
the time required to carry out the computation is
asymptotically greater than the time required, given a
certain result, to determine whether or not that result
is correct. This is possible thanks to a post-condition
the results have to verify. For instance, when resolv-
ing the Discrete Logarithm Problem (DLP, see [17]
page 103-113), checking the correctness of a result
can be done thanks to modular exponentiation and
such computation is much faster than the DLP solv-
ing.
Whereas this approach seems to be very simple and
elegant, it is often impossible to automatically extract
such post-condition on any program.
Furthermore, let assume that the computation of the
result has been performed in parallel on numerous
peers. The detection of the forgery of the final result
(that is only checked) does not supply any informa-

tion on the peer(s) responsible for the forgery. Yet,
as it will be described in§V-C, the knowledge of the
dependencies graph provides a partial post-condition
appliable to any program.
2. duplication [24], [13] : this approach is based on
several executions of each task on many resources
that are divided into workers and oracles. Workers
are dedicated to perform task computation whileor-
aclesare used to check tasks results. Then, a reliable
resource in a peer-to-peer platform may concurently
play the role of a worker and an oracle while a non-
trusted ressource can only be considered as a worker.
Since the certification cost corresponds to the number
of re-execution, duplication of all jobs generates an
important additional cost. Assuming that the tasks
are independent, C. Germain and N. Playez in [13]
suggest to limit thhis overhead by using a sequential
test of Wald [29] when testing abatchof n jobs.
Yet, this approach is limited to applications com-
posed of independent tasks. We propose here an ex-
tension of this approach for the case of tasks with de-
pendencies.

C. Importance of execution modeling

For both Fault-Tolerance and Software Certifica-
tion, we need a representation of the application and
more precisely of its execution. Such a representa-
tion is provided by dataflow description. This is the
subject of the next section.

III. D ISTRIBUTED CHECKPOINT BASED ON

DATA -FLOW REPRESENTATION

A. Data-Flow Mechanism

Our approach is based on the analysis of the
dataflow. In that framework, the application is repre-
sented by a bipartite direct acyclic graphG : the first
class of vertices is associated to the tasks whereas the
second one represents the parameters of the tasks (ei-
ther inputs or outputs according to the direction of the
edge).

Modelling an execution by a dataflow graph is
part of many parallel programming languages such
as Jade [22] or Athapascan [12].

In the sequel, a leaf parameter inG is called ater-
minal output. Associated to a set of terminal out-
putsS, theterminal subgraphis the subgraphGS re-
stricted to the ancestors of the vertices inS. Figure 1
illustrates those notions.
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Fig. 1. Instance of a data-flow graph associated to the execution
of five tasks{f1, ..., f5}. The input parameters of the pro-
gram are{e1, ..., e4} whereas the outputs (i.e the results of
the computation) are{s1, ..., s4}.

The computation of the terminal subgraphGS can
be done in linear time of the size of the subgraph [6].

GS is required for the certification of the terminal
outputs contained inS, thanks to tasks duplication.
However, to ensure that the reexecution of a task de-
liver the same result, additionnal hypothesis are re-
quired. They are presented in the following section.

B. Deterministic task reexecution hypothesis

We exhibit hypothesis (H1, H2 and H3) on a
macro dataflow parallel program that ensure deter-
ministic results based on any individual tasks reex-
ection. Those hypothesis are verified by most peer-
to-peer applications:
• H1 : all synchronizations between tasks are ex-
plicitly described in the dataflow graph;
• H2 : a task is carried out until the end of its exe-
cution without synchronization. Consequently, once
ready, a task can be executed non-preemptivly; it does
not wait the results of any of its child task it has cre-
ated;
• H3 : tasks are deterministic; any execution of a task
with same input delivers the same result.

C. Distributed checkpoint

From previous hypothesis, a global consistent state
of the application is defined:

Proposition 1. assuming H1, H2 and H3, the macro
dataflow graph describes a consistent global state.

Our checkpoint mechanism is based on this propo-
sition and relies on the macro dataflow graph. It con-
sists in an asynchronous distributed systematic stor-
age of each task (identifier and parameters) and of
their data dependencies (identifier and related data
value).

Atomic events are registered for each task decla-
ration, start or completion. Those events are stored
on a checkpoint server (SC) that provides a stable
memory; it may be implemented by a transactional
databases[8]. To ensure scalability, each node in the
grid is related to a SC; but two nodes may be related
to the same SC.

Moreover, this global state can be computed in a
distributed way locally on each processor with no ad-
ditional synchronization overhead. Figure 2 presents
the principle of the checkpointing method; each task
is independently checkpointed and its track is saved
on a checkpoints server (SC) that can be centralized,
herarchic or distributed.

On a theoretical point of view, this checkpoint al-
gorithm avoids domino effects (e.g. the program
is never restarted from initial state). Indeed, if the
MTBF (Mean Time Between Failure) is larger than
the maximal execution timeτ of a task; then it is
ensured that at least one task has been successfully
completed and won’t be reexecuted1.

IV. FAULT-TOLERANCE FROMDATA -FLOW

CHECKPOINTING

From the previous checkpoint of the macro
dataflow, we propose in this section a recovery mech-
anism to resist to node failures and disconnections.

In distributed and parallel systems, the main
source of failure/disconnection are the network and
the nodes. In this section, we consider the fail-
ure/disconnection as node volatility[5]: the node is
no more reacheable and the results computed by this
node after the disconnection will not be considered in
the case of a later reconnection. The failing node is
supposed in a fail-silent mode[21].

1This property also enables to garbage successfully completed tasks,
providing guaranteed bounds for memory space. Besides, since
this checkpoint is performed at the macroscopic level of tasks, this
compares advantageously to logging all inter-process communication
events.
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Fig. 2. Checkpoint method for a dataflow graph.

A. State automaton and recovery for a task

Since events registered in the checkpoint are
atomic, in case of node failure, the checkpoint con-
tains the last registered state for all tasks executed on
this node. The various states of a task are described
by the automaton in figure 3; indeed, after its start and
before its termination, the current state of a taskt is
directly related to the number of children tasks it has
created and which creations have been successfully
registered.

Start

Children 1

Children N

Task  t

Creation 

Creation

Creation
t

Termination

Fig. 3. Automaton for a taskt.

The recovery mechanism is derived from this au-

tomaton. A task is restarted from its last successfully
registered state before failure detection. Figure 4 ex-
hibits the automaton related to fault tolerance.

Start

Termination

Restart t

from "Creation Children 1"

Restart t

from "Creation Children N"

from "Start"

Failure

Failure

Failure

Children 1

Children N

Task t
Restart t

 
Creation t

Creation

Creation 

Re−execution

Re−execution

Re−execution

Fig. 4. Automaton that implements fault tolerance.

B. Recovery mechanism for a peer-to-peer computa-
tion

When a failure of a node is detected, it is handled
by a module which is isolated in a secure enviroment
(such as the oracles introduced in§I). This module is
responsible for:
1. launching the program;
2. reacting to the addition or the resilience of nodes;
3. restarting the execution of failing nodes and even-
tually restarting all the execution.
The recovery algorithm is as follows. In case of a
node failure detection, the stable memory related to
the node is marked to be eventually uncompleted.
This stable memory contains a set of events related
to the dataflow graph, i.e. a subgraph (see§III-A).
The recovery from this stable memory consists in the
rebuilding of this subgraph : tasks that have not yet
been completed are reexecuted, by respecting data
dependencies. All objects that are part of the macro
dataflow have a unique logical identifier which is de-
fined at their creation and registered in the SC; this
identifier remains the same until the execution of the
full application is completed. The recovery algorithm
is detailled in Algorithm 1.

Under hypotheses H1, H2 and H3 that ensure a de-
terministic program re-execution, this mechanism of
Checkpoint/Recovery verifies the following proper-
ties at the time of a recovery :
1. an event is registered once and only once;
2. every task ends correctly its execution once and
only once.
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Algorithm 1: Recovery algorithm in case of fail-
ure
Data: Dumpfilei : Checkpoint file of failing nodei
Result: Launch re-execution of nodei
//uncompleted tasks are restarted from their;
//last successfully registered state;
while (!eof(Dumpfilei)) do

//extract new valid event = a task,;
//its arguments and its current valid state;
(t,arg,state) =getValidEvent(Dumpfilei);
//launch restart of the task from the last state;
t.Restart(arg, state);

Since the checkpoint avoids the domino effects, the
recovery mechanism ensures that a complete execu-
tion of the application is perfomed in a finite number
of re-executions.

The checkpoint mechanism makes it possible to
access the state of the program and consequently to
check its results. Using this checkpoint, we propose
in the next section to limit the number of tasks dupli-
cation to provide a probabilistic level of certification
arbitrary fixed by the user.

V. RESULT CHECKING FROM DATA -FLOW

CHECKPOINTING

After the execution of the application, a set of ter-
minal outputsS = {s1, ..., sm} to certify is consid-
ered.S can contain all or part of the terminal outputs
of the application. Those outputs are independent and
their values result from the execution of tasks on one
or several workers. From the analysis of the dataflow
related to the application, the terminal subgraphGS

is computed (see§III-A). In the sequel,n refers to
the number of tasks inGS .

The problem is then to decide whether or notGS

contains forged tasks, with a risk of second kind
(false negative or non-detection)β ≤ ε, whereε is
an arbitrary threshold fixed by the user.

A. Monte-Carlo test of forgery

In this section, we provide a probabilistic certifi-
cate for detection of forged tasks inGS . This test
is inpired from the Miller-Rabin Monte-Carlo test of
composition (see [17] page 139) which considers that
a number is prime if the probability of non-detection
of composition is small enough.

Similarly, we consider that the results to certify are

correct if the probability of non-detection of forgery
results is small enough. Hence, our test is aMonte-
Carlo test of forgery.

A.1 Bound in the number of tasks to check

Let H0 be the event ”G0 does not contain any
forged tasks” andH1 = H0 (”GS contains at least
a forged tasks”). LetG be a subset ofk uniformly
chosen tasks inGS . These tasks will be submitted to
oracles. Thetester, i.e the certification process, takes
one of the following decisions:
• ”ACCEPT” : no tested task was detected faked (i.e
forged);
• ”REJECT” : at least one of the tested tasks was
detected faked.

The next proposition shows that if the number of
tasks is large enough, then a partial duplication of
onlyNε,q tasks, is sufficient to guarantee a given qual-
ity of certification (the risk of second kind is bounded
by the arbitrary thresholdε). Nε,q is a quantity inde-
pendent from the numbern of tasks.

Proposition 2. Let n be the number of tasks of
the program; letPforgery be the probability of tasks
forgery;

If Pforgery ≤ q, then∀ε > 0, ∃n0 /n > n0 =⇒

it is sufficient to checkNε,q = ln(ε)
ln(1−q)

tasks uniformly
chosen to haveβ = P(ACCEPT |H1) ≤ ε.

Proof. If Ti is the number of tasks that have been de-
tected forged in a setG after i tests, thenTi follows
the binomial lawB(i, q).

Let k be the number of tasks uniformly chosen
among then tasks of the program for checking. We
have :
P(H1) = 1−P(H0) = 1−P(Tn = 0) = 1−(1−q)n

andP(ACCEPT ) = P(Tk = 0) = (1 − q)k.
Now, if the tester answers ”REJECT”, then at least

one task ofG0 is forged. Hence,

β = 1 −
P(REJECT ∩ H1)

P(H1)

= 1 −
P(REJECT )

P(H1)

=
(1 − q)k − (1 − q)n

1 − (1 − q)n
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Then,

β ≤ ε ⇐⇒
(1 − q)k − (1 − q)n

1 − (1 − q)n
≤ ε

⇐⇒ k ≥
ln[(1 − q)n(1 − ε) + ε]

ln(1 − q)
= fε,q(n)

Now, for n > 0, fε,q(n) is a non-decreasing and

positive function, andfε,q(n)
n→+∞
−−−−→ Nε,q = ln(ε)

ln(1−q)
.

Consequently,β ≤ ε as long ask ≥ Nε,q.
Figure 5 exhibits the evolution offε,q(n) whenn

is increasing. We can see that it quickly tends to the
valueNε,q, constant relatively ton.

600

400

n1

200

n5

0
10 100 1000 10000

fε,q(n)

#tasks,ε=5%,ni = Nε,i

#tasks
q=1%
q=5%

q=10%

Fig. 5. Evolution of the minimum number of tasks to check
relatively to the total number of tasksn to haveβ ≤ ε.

To illustrate the previous proposition, the follow-
ing experiment has been set up.

A program composed ofn = 104 tasks is consid-
ered. The probability of tasks forgery isq = 0.01.
The arbitrary certification rate isε = 5%.

In each experiments, the number of tasks uni-
formly chosen to check before the first detection of
forgery is computed. Figure 6 illustrates this algo-
rithm repeated 100 times.

In practice for a peer-to-peer application, the to-
tal number n of tasks is large enough and thus
min {Nε,q, n} = Nε,q = o(n) tasks have to be
checked. For instance, in the context of the experi-
ment described in fig. 6,Nε,q ' 298. Thus, the ad-
ditionnal cost required for the certification is quickly
negligible. This behaviour is illustrated by the exper-
imentations done in§VI (figure 11).

This leads to a simple algorithm for error detection
presented in the next section.

A.2 Detection Algorithm

100

200

300

400

500

#tests

Context : #tasks=106;q=1%;ε=5%

Nε,q ' 298
=

#experiment
Nε,q

Fig. 6. Number of necessary tests before detection in 100 suc-
cessive experiments.The value ofNε,q is also represented in
this context.

The proposition 2 directly leads to a Monte-Carlo
test of forgery: either the test ends afterNε,q success-
ful checks andGS is accepted; or else an error has
been detected.

It is important to notice that in the experiment de-
scribed in figure 6, this algorithm would have failed
- i.e would have given the wrong answer - 4 times.
Hence, in this context,β = 4% which is lesser than
ε. This is a general behaviour.

This algorithm enables the detection of faked tasks
by the execution of randomly chosen tasks. Yet, it
requires that we have the possibility to test tasks in-
dependently to each other, and the way the tasks are
checked has to be defined. Consequently, the in-
puts/outputs of the tasks have to be identified. That’s
where dataflow representation is required.

B. Safe tasks checker

In the previous algorithm, tasks have to be checked
on secure oracles. Thus, anelementary oracleis de-
fined as a task checker operating in a secure environ-
ment. Its running is illustrated in figure 7.

Thanks to the input parameters of the task (ex-
tracted from the checkpoint of the dataflow), a re-
execution of the task can be perform. The results
of this reexecution have to match the previous out-
put results already stored in the dataflow checkpoint;
otherwise, the task has been faked.
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Fig. 7. Running of an elementary oracle

In the sequel,Oe(t) indicates a call to an elemen-
tary oracle to check the execution of the taskt.

C. A Generic Partial Post-Condition

The dataflow introduced in§III-A, figure 1 is also
used to provide a generic partial post-condition.

A complete execution of the program supplies then
a graphGS in which all the parameter values are ex-
plicit, as in fig.1. This graph is called theexecution
track of the program.

Now let’s consider the same graph where all the pa-
rameters values are symbolic, except the input param-
eters of the program ({e1, ..., e4} in fig.1). This par-
tial graph is a summary of the execution track called
thecertification track . It only describes the tasks to
be executed and their dependencies. It has been gen-
erated on reliable resources (oracles) and verify the
following properties:

Proposition 3. • the certification track is a summary
of the execution track;
• a partial execution is sufficient to generate it;
• any correct execution of the program (with the same
inputs) on a remote unsecure worker supplies an exe-
cution track which summary has to correspond to the
certification track.

Therefore, a partial post-condition that can be ap-
plied to any program is defined. Even if it does not
allow to certify the reliability of the computation, it
makes it possible to control the general structure of
the executed DAG. For instance, this post-condition
would have managed to detect the patched clients for
seti@HOME.

Besides, once this post-condition is verified, the
execution track can be used to certify the set of ter-
minal outputsS to detect (and eventually correct) at-
tacks which do not change the structure of the DAG.
This is the subject of the following section.

D. A certification algorithm with error correction

§V-A.2 proposed an algorithm for forgery detec-
tion. Moreover, the execution track allows to iden-
tify the relevant tasks of the program and to access
to their execution context (such as the values of in-
puts/outputs parameters).

In a certification with an arbitrary fixed threshold
ε > 0, the execution trackGS is submitted to an or-
acleO which decides whether the values of the ter-
minal outputs included inS are correct or not, with
respect to the relationβ ≤ ε. Yet, if a forged task
t is detected, the knowledge of the graph allows to
invalidate the successor tasks oft :
• the related sub-graph has to be replayed;
• the partial certification of the other tasks can be
continued in parallel.

Therefore, adynamic parallel certification algo-
rithm is defined and allows tocorrect the forgeries.
This algorithm is detailled in Algorithm 2.

Algorithm 2: Dynamic parallel certification algo-
rithm with error correction
Data: GS : execution track to certify

Result: O(GS)

Check(Ø,GS);

As the partial post-condition previously defined
ensures the general structure of the program for any
execution (tracks are supposed deterministic under
hypothesis H1,H2,H3 defined in§III-B), the relation
GS = GC ∪ GF is satisfied along the recursive calls
to the procedure Check.

Let C be the certification cost i.e. the num-
ber of operations. If no forgery is detected,C ≤
min {Nε,q, n(GS)}. Otherwise, in the case of error
correction and if a certification is obtained afterd de-
tections then the additionnal cost for the full certifi-
cation is≤ (d + 1) min {Nε,q, n(GS)}. Of course, if
the tasks ofGF are to be reexecuted, the unavoidable
cost of this duplication has to be added toC.
The memory cost of the certification isO (n(GS)),
and hence depends on the granularity of the graph.
Moreover, there is a trade-off between the opera-
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ProcedureCheck
Input : GF : subgraph of forged tasks and their suc-

cessors,
GC : the rest of the graph

//Note thatGC ∩ GF = Ø;
G = GC ∪ GF ;
TasksChecked= 0;
repeat

Pick up a new taskt uniformly chosen among
n(G);
if (t ∈ GC) ORIsEndOfExecution(GF)
then

if Oe(t) == 1 then
//Detection of a forgery;
GF = GF∪ Successors(t);
GC = G\GF ;
//GF has to be executed again;
LaunchExecution(GF);
//Checking the tasks ofGC can be pursued;
//whileGF is beeing executed;
Check(GF ,GC);

else
TasksChecked+=1;

until TasksChecked ==min {Nε,q, n(G)};

tions number and the memory space : weak granu-
larity implies a large number of tasks. Consequently,
the memory cost increases but the certification time
(asymptotically bounded by the constant valueNε,q)
is negligible.

VI. EXPERIMENTAL RESULTS

We have implemented this fault tolerant distributed
mechanism on top of Athapascan [23], [12]. Atha-
pascan is developped by the INRIA Apache project
[19]; it is a macro-dataflow parallel language (C++
library) dedicated to distributed architectures includ-
ing SMP nodes.

An Athapascan program describes only computa-
tions to be performed and their dependencies: par-
allelism is described at the grain of a procedure call
(Fork instruction) that are the tasks; each task de-
clares the way it accesses its effective shared parame-
ters (access is typedShared r – resp.Shared w –
for a read – resp. write – access).

In order to register events related to each task and
each shared object and to store them in the server
of checkpoint related to the node, we have encapsu-
lated Fork and Shared classes into two new classes,

”FT::Fork” and ”FT::Shared”. Indeed, this should en-
able the use of our fault tolerance mechanism for any
Athapascan program.
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Fig. 8. Experimental performances with the application bench-
markknaryon a SMP with 4 processors.

Figure 8 exhibits experimental results on theknary
benchmark [4] for recursive tree computations; this
experimenal was made on a SMP node with 4 proces-
sors and the number of tasks varies between 75 and
1500. S0 is the execution time without checkpoints;
S1 is the execution time with checkpoints. We remark
that : S1

S0

' 1 S1−S0

#tasks
' 1ms. Thus, checkpoint over-

head is constant, about 1 ms by task.
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Fig. 9. Experimental performances with the application bench-
markknaryfor a parallel execution on 16 nodes.

Figure 9 exhibits experimental results on the
knarybenchmark [4] for recursive tree computations
(15000 tasks); the number of nodes varies between 2
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and 16 nodes. The failure scenario is as follows: the
execution starts on a cluster with 16 nodes (Pentium
III, 733 MHZ, 256 MB, 15 GB, Ethernet 100 Mb/s); a
failure occurs; recovery is performed from the files of
checkpoints.S0 is the execution time without check-
points;S1 is the execution time with checkpoints;S2

presents the complete run time with 1-fault execution.
We remark that :

S1

S0

' 1

S1 − S0

#tasks
' 1ms

S2

S0

' 1

Thus, checkpoint overhead is constant too in this
scenario. It can be seen that for tasks of 1ms, over-
head is about 10% compared to a normal execution
without fault tolerance; for longer unit tasks (0.1s)
the overhead becomes lesser than 1%.

Concerning result checking, experimental results
are exhibited in figures 10 and 11.

 0

 20

 40

 60

 80

 100

212 213 214 215 216 217 218 219 220 221
 0

 10

 20

 30

 40

 50

P
er

ce
nt

ag
e

G
en

er
at

io
n 

T
im

e

Number of tasks

Ratio (%)
Certification Track

Execution track
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Figure 10 confirms that a partial execution of the
program (around 20% of the time needed to compute
an execution track) is sufficient to generate a certifi-
cation track.

In the experiment described in figure 11, no error
was introduced in the computation of the program. In
this context, the certification time by complete dupli-
cation (all the tasks are replayed) introduced is com-
pared to the certification time by partial duplication

(only Nε,q uniformly chosen tasks are replayed, with
ε = 0, 1 and q = 0, 01). If the number of tasks is
small, the second approach comes down to the first
one as all the tasks are checked. But an increase of
the number of tasks quickly favours the partial dupli-
cation approach in terms of certification time, even if
the certification is then probabilistic.
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Fig. 11. Comparison between certification by complete and
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VII. C ONCLUSION AND PERSPECTIVES

We have presented an execution algorithm for
peer-to-peer applications that ensures robustness both
to resource failure or disconnection and to result
forgery. This algorithm is based on the checkpoint-
ing of the macro dataflow related to the application
which describes both the tasks and their data depen-
dencies. The checkpointing of the macro dataflow on
reliable resources is asynchronous and distributed. It
provides a portable mechanism to support resource
failure and disconnection.

Furthermore, it enables reexecution of tasks. Then,
detection of task forgery in the application is per-
formed by duplication of randomly chosen tasks.
Then a probabilistic certificate of the whole applica-
tion is proposed based on the individual forgery prob-
ability of each task. The number of tasks to be du-
plicated is small: for instance, if probability of task
forgery is 1%, 298 tasks only are duplicated in or-
der to achieve a certification with probability 95%,
whatever the number of tasks in the application is
(fig. 6). If a task is detected forged, the checkpoint of
the macro dataflow is used to invalidate and reexecute
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only other dependent tasks till correction of the entire
application.

Implementation of this algorithm on top of Atha-
pascan system exhibits a small computational over-
head that can be amortized for middle-grain tasks.
Also, this algorithm is promising on a practical point
of view and we are currently investigating its use for
a medical application on a grid of resources in the
framework of the french RAGTIME project.

When many tasks are dynamically created, there
is an interesting tradeoff between the memory space
required to store the checkpoint and the number of
task duplications to be performed. On the one hand,
the checkpoint/restart algorithm is distributed and en-
ables to garbage tasks once they are completed; this
property may be used to save memory space at the
price of reexecuting all garbaged tasks in case of
forgery detection. On the other hand, the efficiency
of the probabilistic result checking algorithm dire-
clty depends on the number of tasks to be certified:
the more the tasks, the more efficient their checking.
The certification algorithm we propose in this paper
is motivated by minimizing the number of tasks to
be reexecuted. Also, a perspective is a certification
algorithm submitted to both time and memory space
constraints.
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