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Abstract
Large scale cluster and grid computer systems gather
thousands of nodes for computing parallel applications.
At this scale, component failures or disconnections are
normal part of operation, and applications have to deal
more directly with repeated failures during program runs.
In this paper, we present a portable fault tolerant mech-
anism for execution of macro dataflow parallel programs
on a large scale distributed and heteogeneous grid includ-
ing SMP nodes. Our mechanism is based on a portable
checkpoint-rollback and supports both parallel programs
with dependencies and addition or resilience of heteroge-
neous resources. We have implemented this mechanism on
top of Athapascan programming interface and experimen-
tal results are presented.

1 Introduction
In recent years, parallel computers, workstation clusters
and grid systems have attracted more and more attention
for high end applications which demand very high com-
putational performance like multi-physics simulations or
complex data analyses. The main advantage of these sys-
tems is the scalability from small up to very large systems.
However, on a large scale system, node failures or discon-
nections are frequent events, that have to be considered.

A current trend in parallel computing is to be able to ex-
ecute parallel applications with communication between
tasks on a large scale distributed and heteogeneous grid
system including SMP (Symetric Multi Processor) nodes.
For distributed and parallel systems, the main sources of
failure/disconnection are the network and the nodes. In
this work, we consider the failure/disconnection as node
volatility : the node is no more reachable and the results
computed by this node after the disconnection will not be
considered in the case of a later reconnection.

In this paper, we present a portable fault tolerant mech-
anism for execution of macro dataflow parallel programs
on a large scale distributed and heteogeneous grid includ-
ing SMP nodes. This mechanism is based on a portable
checkpoint-rollback and supports both parallel programs
with dependencies and addition or resilience of heteroge-
neous resources.

∗This work is performed with the supported by a grant of the Syrian
Government in the framework of the France-Syria bilateral agreement.

The second section of the paper presents related works
on fault tolerance for parallel computing. Section 3
presents our approach for checkpoint/rollback which is
based on the graph of dependency associated to a paral-
lel program. In section 4, we present an implementation
of this mechanism on top of Athapascan [8] programming
interface and experimental results will be presented.

2 Related work
Global Computing platforms, such as large scale clusters
and Grid systems, gather thousands of nodes. Since, node
failures or disconnections are frequent events. The study
of fault tolerance mechanisms suited to such platforms is
an active field of research [5, 9, 6, 11, 13, 7]. Namely two
categories of applications are considered:

• independent jobs, like in the Condor [17] batch sys-
tem: the application is a set of independent sequential
jobs, each job being a process, which may be dynam-
ically created. The related fault tolerant mechanism
[10] then consists in checkpointing each sequential
process independently. This approach supports ad-
dition and resilience of resources, but is restricted to
jobs without dependencies.

• applications based on message passing, most of-
ten developped with MPI [5] or PVM [9] . The
number of processors is fixed at the starting of the
execution, and the application consists in a fixed
number of communicating processes. In MPICH-V
[5], each process is checkpointed independently at
a given coordinated checkpoint [7]; to build a con-
sistent global state, all communication performed by
any process are logged [1]. Egida [13], provides a
toolkit for PVM applications to support fault toler-
ance; thus toolkit similarly enables the checkpointing
of a global consistant state. In both MPICH-V and
Egida, the checkpoint/recovery algorithm requires a
memory space large enough to store all communica-
tion events between two checkpoints. Here, the re-
covery consists in replacing a failure node by a new
node; but addition or resilience of resources is not
supported.

Both cases are based on a memory core of each se-
quential process; also, they do not currently support nei-
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ther restart on heterogeneous nodes nor checkpoint of con-
current multithreaded processes within a single sequential
process.

Besides, addition of resources is based on a greedy
scheduling (such as work stealing [4]), in order to achieve
portability on platforms when new resources may become
available during execution.

When a new resource is added, a new process is started
on this resource. First, at initialization, this process estab-
lishes logical connection (e.g. TCP/IP sockets) with the
other processes to join the application in the grid compu-
tation. Then, the application consists in a logical complete
network of processes. Then, the ready process tries to steal
computation tasks from the other processes.

Due to the dependencies, the results of the stolen task
may be used as input of other tasks. Also, to mange de-
pendencies independently from the execution on the dy-
namic architecture, the application is represented by a
DAG (Diect Asyclic Graph), that describes computational
tasks and thier data dependencies. In macro dataflow par-
allel languages (e.g. Athapascan [8], Cilk [2], Jade, Nesl,
Smart, ...), such a DAG is implicitly defiened from the sin-
taxe of the program.

The macro dataflow graph is used to support addition of
resources with the help of a greedy scheduling. In the new
section, we propose to also use this macro dataflow graph
for a distributed checkpointing mechanism to support fault
tolerant execution in case of resource failure.

3 Checkpoint/Restart of the depen-
dency graph

In order to deal with heterogeneous resources, a portable
fault tolerant mechanism shall be considered. In Porch
[16], such a portable checkpoint is proposed for sequen-
tial architectures; it is based on the log of the stack which
stores each nested procedure call (identity of the proce-
dure, values of its effective parameters and local vari-
ables).

To avoid a large overhead, checkpoint is performed just
once a failure is detected. Restart mainly consists in re-
building the stack from the checkpoint and branching to
the last procedure call in progress (labels are added in the
source code for this branching).

We propose an extension of this mechanism for a macro
dataflow computation on a distributed dynamic architec-
ture.

3.1 Dataflow graph
The parallel program is modelled by a bipartite graph
(Fig.1): node sets correspond to tasks and data; an edge
between two nodes represents a data dependency (either
Read or Write dependency). A task is only executable if
all of its input data are available.

Although the graph associated to a program is known
only at the end of the execution, it evolves during the ex-

ecution time. Then, at the time i the state of the graph
represents the state of the parallel program at this i. A
runtime kernel guarantees the correctness of the graph in
a distributed environment.

void Factorization_LU( matrix<TYPE> A )
{
for( int k = 0 ; k < A.row_dim();k++){
FORK Block_Factorization_LU(A(k,k));

for( int i = k+1 ; i < A.col_dim();i++)
FORK Block_Times_Inverse_U(A(i,k),A(k,k));

for( int j = k+1 ; j < A.row_dim();j++)
FORK Block_Times_Inverse_L(A(k,j),A(k,k));

for( i = k+1 ; i < A.col_dim() ; i++ )
for( j = k+1 ; j < A.row_dim() ; j++ )
FORK Minus_Times( A(i,j),A(i,k),A(k,j));

}
}

A(1,2)

Minus_Times

A(1,1)

A(1,2)A(1,1)A(2,1)

A(2,1)

A(2,2)

A(2,2)

Block_Factorization_LU

Block_Times_Inverse_L

Block_Factorization_LU

Block_Times_Inverse_U

Figure 1: Pseudo-code of an Athapascan macro dataflow
program (LU factorization) and a related graph.

As illustration, figure 1 presents a pseudo-parallel code
in Athapascan for a Gauss matrix factorization, the macro
dataflow graph generated after the execution of the task
Factorization_LU on a input matrix partitioned on
four blocks (A.row_dim() = A.col_dim() = 2,
A[i,j] represents a block of matrix). In the graph, the
ellipses represent the tasks executed and the boxes the data
handled by the task. The arrows show the data dependen-
cies.

This dependency graph is distributed, dynamic and
nested in case of recursive computations; moreover, nodes
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that are completed and no more referenced are garbaged.
It is -at least implicitly- computed by the runtime ker-
nel in order to ensure the semantics of the computation;
e.g. implementations for parallel functional languages for
macro dataflow parallel languages rely on cactus stack
[15] which can be considered as a coding of this graph.
Indeed, the graph may be seen as an extension of the se-
quential stack considered in [16], the cactus stack repre-
sents the state of each stack related to each computation
task not yet completed.

We exhibit hypothesis (H1, H2 and H3) on a macro
dataflow parallel program that ensure deterministic reex-
ecution. Those hypothesis are verified by most macro
dataflow programs; such as Athapascan [8] :

• H1 : the synchronizations between the tasks are im-
plicitly defined so as to respect the semantics defined
on the accesses to the shared objects;

• H2 : a task is carried out until the end of its execution
without synchronization. The creation of task is not
blocking and a creative task cannot await the results
of a task created by it;

• H3 : tasks are deterministic; any execution of a task
with same input delivers the same result.

Assuming that these hypothesis, the following proposed
are proved.

Proposition 1: assuming H1, H2 and H3, the macro
dataflow graph describes a consistent global state. More-
over, this global state can be computed in a distributed way
locally on each processor with no additional synchroniza-
tion overhead.

Proposition 2: under these hypothesis H1, H2 and H3,
at each time top, the additionnal memory space required
to store this global state is bounded by the memory space
required by the parallel execution of the program itself.

Moreover, this global state can be computed in a dis-
tributed way locally on each processor with no additional
synchronization overhead. this compares advantageously
to logging all communication events that may require an
unbounded memory space.

3.2 Checkpoints
Our fault tolerant mechanism relies on the checkpoint of
the macro data flow graph. In order to support multi-
threaded programming on symmetrical multi-processors
(SMP) nodes, this checkpoint is performed at a fine grain.
It consists in an asynchronous distributed systematic stor-
age of each task (identifier and parameters) and of the data
dependencies (identifier and value of the shared data or
object).

Atomic events are registered for each task declaration,
start or completion. To ensure scalability, each node in the
grid is related to a checkpoint process that uses a stable
memory; but two nodes may be related to the same check-
point process.

Figure 2 presents the main idea of the checkpoint
method for a macro dataflow graph, each task is inde-
pendently checkpointed and its checkpoint is saved on a
checkpoints server (SC). This server SC, can be central-
ized, herarchic or distributed.

On a theoretical point of view, this checkpoint algo-
rithm avoids domino effects (e.g. the program is never
restarted from initial state); if the MTBF (Mean Time Be-
tween Failure) is larges then the maximal execution τ of a
task; τ is lesser then the critical time T∞ of the program on
an infint number og ressources, and this checkpoint algo-
rithm provides provable bounds for memory space (propo-
sition 2).
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Figure 2: Checkpoint method for a dataflow graph.

The checkpoint algorithm can be presented as follows :

1. For each shared object do :

• before the creation of a shared object S :

(a) assigns an identification to the objet S.
(b) builds the traced event of S which contains

: identification of the object, the value of
the object.

• at the time of modifying the value of S:

(a) modifies the traced event of S (value of S
= new value).

(b) saves the traced event of S on the check-
point server (SC).

• When no more reference on the object S exists
in the system:

(a) garbages the traced events related to the S
on the checkpoint server (SC).
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2. For each task do :

• before the creation of a task T :

(a) assigns an identification to the task T.
(b) builds the traced event of T which contains

all inputs of T.

• at the time of the creation of T:

(a) modifies the traced event of T (status of T
= creat).

(b) saves the traced event of T on the check-
point server (SC).

• when the execution of T starts :

(a) if the task T is migrated then mark that
event at the creator of T.

(b) Modifies the traced event of T (status of T
= start).

(c) saves the traced event of T on the check-
point server (SC).

(d) at the time of the creation of any chil-
dren of T : modifying the traced event of
T (number children created = +1).

(e) saves the traced event of T on the check-
point server (SC).

• when the execution of T completes :

(a) Modifies the traced event of T (status of T
= end).

(b) saves the traced event of T on the check-
point server (SC).

(c) garbages the events related of T on the
checkpoint server (SC).

3.3 Restart (Recovery)
The recovery algorithm is as follows. In case of failure de-
tection of a node, the stable memory related to the node is
marked to be eventually uncompleted. This stable mem-
ory contains a set of events related to the dependency
graph, i.e. a subgraph. The recovery from this stable
memory consists in the rebuilding of this subgraph; tasks
that have not yet been completed are reexecuted, while re-
specting data dependencies. The restart algorithm is the
following :

• inisalization to perform a normal execution;

• during this restart execution, all shared objects get
the same same identifiers to the shared objects as the
execution before failure.

• initializes the value of each shared object created
during this restart execution, from the checkpoints
server.

• executes the tasks which are not finished in the
checkpoints server for a failure node, in the same or-
der that they were created before failure.

Under hypotheses H1, H2 and H3, in the case of a deter-
ministe program, the mechanism of Checkpoint/Rollback
proposed verifies the following properties at the time of a
recovery :

1. a task is created once and only once;

2. every task finishes correctly its execution once and
only once.

In the framework of a parallel program with a dynamic
graph of tasks, the algorithm proposed reaches the end,
after a limited number of re-executions, given a task T,
the creation of T is executed only once in any execution.
At the time algorithm of recovery finishes the execution,
any task was effectivly creates once and only once and
terminated correctly once.

4 Implementation and evaluation
We have implemented this fault tolerant distributed mech-
anism on top of Athapascan [14, 8]. Athapascan is devel-
opped by the INRIA Apache project [12]; it is a macro-
dataflow parallel language (C++ library) dedicated to dis-
tributed architectures with SMP nodes.

An Athapascan program describes only computations
to be performed and their dependencies: parallelism is de-
scribed at the grain of a procedure call (Fork instruction)
that are the tasks; tasks are defined from the access per-
formed by a task on its effective shared parameters (ac-
cess is typed Shared_r – resp. Shared_w – for a read
– resp. write – access). Figure 1 gives an example of an
Athapascan program and the related dependency graph.

In order to register events related to each task and each
shared object and to store them in the server of check-
point related to the node, we have encapsulated Fork
and Shared classes into two new classes, "FT::Fork" and
"FT::Shared". Indeed, this should enable the use of our
fault tolerance mechanism for any Athapascan program.

Figure 3 exhibits experimental results on the knary
benchmark [3] for recursive tree computations; this exper-
imenal was made on a SMP node with 4 processes and the
number of tasks varies between 75 and 1500. S0 presents
the execution time without checkpoints, S1 shows the ex-
ecution time with checkpoints. We remark that :

S1

S0

' 1

S1 − S0

#tasks
' 1ms

Thus, checkpoint overhaed is constant (1 ms by task).
Figure 4 exhibits experimental results on the knary

benchmark [3] for recursive tree computations (15000
tasks); the number of nodes varies between 2 and 16
nodes. The failure scenario is as follows: the execu-
tion starts on a cluster with 16 nodes (Pentium III, 733
MHZ, 256 MB, 15 GB, Ethernet 100 Mb/s); a failure oc-
curs; recovery is performed from the files of checkpoints,
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Figure 3: Experimental performances with the application
benchmark knary : SMP with 4 threads.

S0 presents the execution time without checkpoints; S1

shows the execution time with checkpoints; S2 presents
the complete run time with 1-fault execution. We remark
that :

S1

S0

' 1

S1 − S0

#tasks
' 1ms

S2

S0

' 1

Thus, checkpoint overhaed is constant too in this sce-
nario. It can be seen that for tasks of 1ms, overhead is
about 10% compared to a normal execution with no fault
tolerance; for longer unit tasks (0.1s) the overhead be-
comes lesser than 1%.

5 Conclusion and perspectives
We have presented a portable mechanism for fault-tolerant
macro dataflow computations, which supports both het-
erogeneous and SMP nodes, both addition and resilience
of resources. Our approach is based on the check-
point/rollback of the dynamic graph of tasks which gives
raise to a consistent global state.

A prototype has been developped on top of Athapas-
can programming interface. Experiments exhibit a small
overhead and make the system suited to middle grain ap-
plications; within the french ACI DOCG, we are cur-
rently adapting this prototype to provide fault-tolerance
to a quadratic assignment application developped in Atha-
pascan by Van Dat Cung at PRISM-Versailles.
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Figure 4: Experimental performances with the application
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In the case of fine grain applications, to decrease the
overhead of systematic checkpointing of any atomic event,
a complementary approach consists in performing coor-
dinate checkpoint of the Athapascan cactus stack, dis-
tributed on the nodes. Our future work will compare both
approaches.
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