
Self-Adaptation of Parallel Applications in Heterogeneous and Dynamic

Architectures∗

Samir Jafar†, Laurent Pigeon‡, Thierry Gautier and Jean-Louis Roch
Projet MOAIS(CNRS/INPG/INRIA/UJF) – Laboratoire ID-IMAG (UMR 5132)

51 avenue Jean Kuntzmann – 38330 Monbonnot – FRANCE
Email:(Samir.Jafar, Laurent.Pigeon, Thierry.Gautier, Jean-Louis.Roch)@imag.fr

Abstract

In this paper a mechanism for adaptation of parallel
computation is defined for data flow computations in
dynamic and heterogeneous environments. Our mech-
anism is especially useful in massively parallel multi-
threaded computations as found in cluster or grid com-
puting. By basing the state of executions on a data flow
graph, this approch shows extreme flexibility with re-
spect to adaptation of parallel computation induced by
application. This adaptation reflects needs for changing
runtime behavior due to time observable parameters.
Specifically, it allows an on-line adaptation of parallel
execution in dynamic heterogeneous systems. We have
implemented this mechnism inKAAPI (Kernel for Adap-
tative and Asynchronous Parallel Interface) and exper-
imental results show the overhead induced is small.

1 Introduction

A current trend in parallel computing is to be able to
execute parallel applications with communication be-
tween tasks on a large scale distributed and heteoge-
neous platform including SMP (Symmetric Multi Pro-
cessor) nodes. Grid, cluster and peer to peer architec-
tures are gaining in popularity for scientific computing
applications. Such architectures are well known to be
heterogeneous and highly dynamic in content and load,
i.e. nodes are continuously joining and leaving the sys-
tem.

Regarding parallel applications, this feature is a
challenging problem to fully exploit the whole paral-
lelism induced by the application. This paper deals
with adapting the execution of parallel applications to
the executing environment in order to reach high per-
formances.

In this paper we present our framework for writing
grid applications in order to adapt them on large hetero-

∗This work is supported by a AHA project.
†This author is supported by a grant of the Syrian Government
‡This author is supported by the IFP (French Institute of

Petroleum)

geneous and dynamic grid. Our work extends previous
approaches [1, 11] by making transparent to the user the
mechanism of adaptation. The idea is based on com-
putational reflection [1, 8] of the system: At runtime
the casually connected representation of the system is a
data flow graph between the tasks of the future of the
execution [4]. It allows to take into account the struc-
ture of the computation, including communications be-
tween tasks (i.e. jobs) of the application to makes self-
adaptation of parallel execution.

Within the context of this research this graph is dy-
namic, i.e. it changes during runtime as the result of
task creations or terminations. This representation is
maintained by our framework at low cost and it defines
the global state of the application’s execution. Based on
this execution model, we define the online adaptation of
a parallel execution as the solution of the two following
problems: leaving of computational resources is solved
by using fault-resilience mechanisms [6, 7]; and adapt-
ing the performance to a variation (joining or leaving)
of resources is equivalent to solve an online scheduling
problem.

This paper presents our technical choices to imple-
ment self-adaptation of parallel applications in hetero-
geneous and dynamic architecture. Thanks to KAAPI

runtime and to its abstract representation of the exe-
cution, a fully useful middleware can manage and run
large applications on a grid oriented architecture under
dynamic constraints. This paper also proposes to evalu-
ate the overhead of a such approach in the context of an
online scheduling of recursive application by worksteal-
ing with respect to variation of the number of resources.

The second section of the paper presents related
works on adaptability for parallel computing. Section
3 presents our execution model for parallel and dis-
tributed applications. In section 4, we present our ap-
proach for self-adaptation of parallel applications which
is based on the graph of dependency associated to a par-
allel program. In section 5, we present an implemen-
tation of this mechanism on KAAPI and experimental
results will be presented.

2 Related Work

In recent years, self-adaptation of parallel and dis-
tributed applications have attracted more and more at-
tention for high performance of execution in a dy-
namic and heterogeneous platform. The study of self-
adaptation mechanisms suited to such platforms is now
an active research area [2, 13, 3, 12, 1, 11]. These stud-
ies differ in the kind of adaptation with respect to com-
puting environments, software or performance.

Authors of [1, 11] have studied self adaptively
based on either fine (message passing) or coarse (com-
ponent) grain respectively. Both projects study frame-
works to adapt the workload of applications to the com-
putational environment with respect to a given estima-
tion of the performances of the grid. The adaptation
mechanism relies on an operation to migrate a com-
ponent or a process. The points where the applica-
tion might migrate are explicitly provided by the pro-
grammer of the application. A controller takes decision
to adapt the execution of the application regarding the
predicted times with respect to the gathered execution
times using monitoring and analysis tools provided by
others parts of their framework.

Our work extends previous approaches by making
transparent to the user:

1. The definition of migration points in an applica-
tion.

2. The re-scheduling of the application to adapt the
performance on variation of resources.

The idea is based on computational reflection [1, 8]
of the system: At runtime the casually connected repre-
sentation of the system is a data flow graph between the
tasks of the future of the execution [4]. It allows to take
into account the structure of the computation, including
communications between tasks (i.e. jobs) of the appli-
cation to solves (1) and (2).

3 Execution Model

KAAPI is a middleware that allows to develop an appli-
cation in such manner that the scheduling is a plugin:
changing the scheduling algorithm does not require any
modification of the application. The architecture of the
middleware is sketched in figure 1. The key point in
the design of KAAPI is its abstract representation of ap-
plication as a data flow graph. This representation was
firstly design because it is well suited for scheduling
algorithm. In [6, 7] we extend the use of this represen-
tation to add fault-tolerance support in KAAPI.

The view of the application through the middleware
is a data flow graph that describes the computation. This
representation is the input of high level algorithm such
that scheduling algorithms or fault-tolerence protocols.
The runtime environment is view by KAAPI through
sensors that monitor the resources and by decision such
that instantiation of new process.

3.1 Data flow graph representation

At the base of the execution model is the macro data
flow model. A data flow graph [10] allows for a natu-
ral representation of a parallel execution, and it can be
exploited to achieve fault-tolerance [9]. By the princi-
ple of data flow, tasks become ready for execution upon
availability of their input data.

Definition 1 A data flow graph is defined as a directed
graphG = (V, E), whereV is a finite set of vertices and
E is a set of edges representing precedence relations be-
tween vertices. The vertex set consists of computational
tasks, as seen in the traditional context of task schedul-
ing, and the edge set represents the data dependencies
between the tasks.

Within the context of this researchG is a dynamic
graph, i.e. it changes during runtime as the result of
task creations or terminations. The target environment
for multithreaded computations with data flow synchro-
nization between threads is the Kernel for Adaptive,
Asynchronous Parallel Interface (KAAPI) [6], imple-
mented as a C++ library. The library also contains an
high level API called Athapascan [5] and it is able to
schedule programs at fine or medium granularity in a
distributed environment [4].

3.2 Definition of execution state

The runtime support in KAAPI defines several objects.
The data flow graph as presented above may be parti-
tioned due in order to distributed the work-load among
the processors. A thread of control is in charge of ex-
ecuting tasks in a partition of the data flow graph. A
process may handles several threads and a set of com-
municating processes represents the distributed execu-
tion of application.

The state of the application’s execution is the states
of all processes. In [6, 7] we have presented how to de-
fine the global state of the application’s execution by re-
ducing it to the local states of the data flow graph handle
by each process. Thus, the macro data flow graph to de-
fine the state of the application’s execution. The graph
is a representation of the computational tasks to be car-
ried out along with the associated data, which consti-
tute the inputs and outputs. The data flow is dynamic

2

Environment: cluster, grid

Application

Ga
ra

nt
ee

 o
f p

er
fo

rm
an

ce
s

KAAPI

causally link

model: abstract representation
as a data flow graph

algorithm: scheduling, fault tolerance

Figure 1: Architecture of KAAPI middleware.

is platform-independent. As a result the graph or por-
tions of it can be moved across heterogeneous platforms
during execution. Formally, at any instance of time
t, the macro data flow graphG describes a platform-
independent, and thus portable, consistent global state
of the execution of an application. Whereas graphG is
viewed as a single virtual data flow graph, its implemen-
tation is in fact distributed. Specifically, each processi
contains and executes a subgraphGi of G.

4 Self-Adaptation of parallel ap-
plications

In a dynamic platform two important changes can oc-
cur during the execution of application: the departure
and the arrival of resources with respect to the appli-
cation. Next sections describe the adaptation mecha-
nism for this both cases. The implementation of these
adaptation mechanism is done in the ”algorithm” box
described in the architecture of KAAPI in figure 1.

4.1 Adaptation to the departure of re-
sources

One can classify the departure of resources in two
classes: involuntary or voluntary departures. The in-

voluntary departure happens in case of failure of re-
source. The application does not have any information
about the date of the failure and should anticipate it.
The key idea to process the two previous cases is to
define a portable checkpoint of process. This check-
point must be platform-independent and one does not
need to allocate a new resource to restart the leaving re-
source from its last checkpoint. For instance, process on
alive resource may integrate the computation stored in
the checkpoint to its own running computation. Fault-
tolerance protocol is applied in this case such as those
describe in [6, 7]. The mechanisms is based on portable
and distributed checkpoint of the computation state of
parallel application and allows local recovery of the
only crashed resources. The departure of a resource is
calledvoluntarywhen the system knows the date when
this resource will leave the computation. This is the
case when using a batch system to reserve machines
with bounded time. In case of voluntary departure of
resource, the idea of ”migration of computation” is ap-
plied: just before the date of the departure, a checkpoint
is produced, and the workload and data is moved to an-
other resource.

3

 Adaptation to the arrival of resources

179 175,54 172,04 168,625 165,575 162,625

0

50

100

150

200

0 1 2 3 4 5

#Changes

Ti
m

e
(s

)

Tp

Figure 2: Efficiency of the adaptation mechanism to the arrival of new resources.

4.2 Adapting to the arrival of resources

In order to reach some high performance computations,
the work has to be load balanced using a scheduling
algorithm that computes the distribution of the work.
This is important if several new resources may be used
to gain in performance. In this paper we study two main
scheduling algorithms classes. The former is based on
a dynamic scheduling by work-stealing. The later uses
static graph scheduling algorithms.

The main concept behind work-stealing algorithm
is that an idle resource steals some work from an over-
loaded node. Based on this remark, the addition of com-
puting resources is trivial: the idle resource begins by
stealing work. The deletion of resources involves the
redistribution of checkpoints to others alive resources
using our fault-resilience mechanism.

Our second scheduling algorithms class is best
suited in case of numerical simulation applications
where the whole data flow graph of the application is
known before the execution of the tasks (note that with
KAAPI this is done at runtime). Using static graph
scheduling algorithms can produce a quasi-optimal
scheduling of the data flow graph, taking into account
communication overheads. Such a method usually al-
lows to reuse the same schedule for several steps un-
til the workload becomes unbalanced. In case of de-
tection or deletion of resources, our approach is to re-

compute a schedule of the tasks with the new number
of resources. This possible because KAAPI maintains
a causally connected representation of the application’s
execution. The adaptation mechanism load checkpoint
to reconstruct the data flow graph of the execution to be
re-scheduled. Thus, at any time, it is possible to recon-
figure a running computation and to optimise the per-
formances of execution by using the results of a static
scheduling algorithm.

5 Experimental results

We have implemented the self-adaptation mechanism
on KAAPI [7, 6]. The library is able to schedule
fine/medium size grain program on distributed machine.
The performance and overhead of the self-adaptation
mechanism were experimentally determined for the Fi-
bonacci Banchmark,i.e. Fibonacci number computa-
tion, which was parallelized in KAAPI.

The experiments were conducted on a cluster of
Grid5000 architecture1. The cluster consists of 32
nodes interconnected by a 100Mbps Ethernet network.
Each node features two processors (2000 MHz) and 2
GB of main memory.

The execution on a single processor, calledTs, ends

1http://www.grid5000.fr/

4

Adaptation to the departure of resources

190

209,74
224

243,8
256,7

276,6

0

50

100

150

200

250

300

0 1 2 3 4 5

Changes

Ti
m

e
(s

)

Tp

Figure 3: Efficiency of the adaptation mechanism to the departure of resources.

in 6605 seconds. Usingp = 40 processors the comple-
tion time, calledTp, is 179 seconds Figure 2 shows the
times of the execution when new resources are joining
the computation. The experiment is the following. For
thei-th bar in the figure, the execution starts on the clus-
ter with 40 processors, and each20× i, i = 0, ..., 5 sec-
onds from the start we add a new processor. The time is
decreasing when new processor are joining the compu-
tation. The observed efficiency in resource utilization is
good (> 90%).

Next experiment presents the impact of our adap-
tation mechanism to the departure of resources. Fig-
ure 3 reports times of the following experience. The
execution starts on the cluster with 40 processors, after
20 seconds from the start we kill one processor and the
execution continues on 39 processors, after 40 seconds
we kill a second processor and the execution continues
on 38 processors, etc. To drive this experiment fault-
tolerance protocol described in [7] was used.

The execution on a single processor with check-
pointing, using one checkpoint server, every 10 seconds
is 6905 seconds. Onp = 40 processors the comple-
tion time is190 seconds. There is a small overhead due
to the checkpointing which respect to the times given
above. A depicted in the figure, the runtime is increas-
ing with respect of the number of processors that have
leaving the computation. But it noticeable better in

comparison in the loss of full work if the computation
of the leaving processor was not checkpointed.

6 Conclusion

In order to address performance of large parallel ap-
plications we have introduced self-adaptation mecha-
nism for data flow applications in heterogeneous and
dynamic platform. The state of the parallel application
is represented in a portable fashion utilizing data flow
graph and is a first class object on which the adaptation
algorithm acts. Due to the casually connected represen-
tation of the data flow graph with the application, any
modification of the representation is traduced on modi-
fication on the behavior of the execution. Moreover, the
abstract representation is a platform-independent de-
scription of the application state, which makes it pos-
sible to adapt in a dynamic and heterogeneous cluster
or grid. The overhead associated with this mechanism
was shown to be small, to the point of being negligible
in case of resources addition.

References

[1] Jéŕemy Buisson, Françoise André, and Jean-Louis
Pazat. Dynamic adaptation for grid computing. In

5

EGC, pages 538–547, 2005.

[2] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche.
Self adapting software for numerical linear alge-
bra and lapack for clusters, 2003.

[3] J. Dongarra and V. Eijkhout. Self-adapting nu-
merical software for next generation applications,
2002.

[4] F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Dor-
eille. Athapascan-1: On-line building data flow
graph in a parallel language. In IEEE, editor,
PACT’98, pages 88–95, Paris, France, October
1998.

[5] R. Revire J. L. Roch, T. Gautier. Athapas-
can: Api for asynchronous parallel pro-
gramming. Technical Report RT-0276,
www-id.imag.fr/software/ath1 , Projet
APACHE, INRIA, February 2003.

[6] S. Jafar, T. Gautier, A. Krings, and J-L. Roch.
A checkpoint/recovery model for heterogeneous
dataflow computations using work-stealing. In
Proceedings of EuroPar’05, Portugal, August
2005.

[7] S. Jafar, A. Krings, T. Gautier, and J-L. Roch.
Theft-induced checkpointing for reconfigurable
dataflow applications. InProceedings of the IEEE
Electro/Information Technology Conference EIT,
U.S.A., May 2005.

[8] Pattie Maes. Concepts and experiments in compu-
tational reflection. InOOPSLA ’87: Conference
proceedings on Object-oriented programming sys-
tems, languages and applications, pages 147–155,
New York, NY, USA, 1987. ACM Press.

[9] A. Nguyen-Tuong, A. S. Grimshaw, and M. Hyett.
Exploiting data-flow for fault-tolerance in a wide-
area parallel system. InProceedings 15 th Sympo-
sium on Reliable Distributed Systesm, pages 2–11,
1996.

[10] J. Silc, B. Robic, and T. Ungerer.Asynchrony in
parallel computing: from dataflow to multithread-
ing, pages 1–33. Nova Science Publishers, Inc.,
2001.

[11] Sathish S Vadhiyar and Jack J Dongarra. Self
adaptivity in grid computing. Concurrency and
Computation, 17(24):235–257, 2005.

[12] Sathish S. Vadhiyar, Graham E. Fagg, and Jack
Dongarra. Automatically tuned collective commu-
nications. pages 46–46, 2000.

[13] R. Clint Whaley and Jack Dongarra. Self adapt-
ing linear algebra algorithms and software. In
SC’98: High Performance Networking and Com-
puting, 1998.

6

