
CCK: An Improved Coordinated Checkpoint/Rollback Protocol for
Dataflow Applications in KAAPI

Xavier Besseron, Samir Jafar∗, Thierry Gautier and Jean-Louis Roch

Projet MOAIS(CNRS/INPG/INRIA/UJF) – Laboratoire ID-IMAG(UMR 5132)
Monbonnot ZIRST/51 avenue Jean Kuntzmann – 38330 Monbonnot – FRANCE
Email:(Xavier.Besseron, Samir.Jafar, Thierry.Gautier, Jean-Louis.Roch)@imag.fr

Keywords. Parallel Application, Dataflow Graph,
Checkpoint/Recovery.

Abstract

Fault tolerance protocols play an important role in today
long runtime scientific parallel applications because the
probability of failure may be important due to the num-
ber of unreliable components involved during simula-
tion. In this paper we present our approach and prelim-
inary results about a new checkpoint/recovery protocol
based on a coordinated scheme. This protocol is highly
coupled to the availability of an abstract representation
of the execution.

1 Introduction

Since few years, fault-tolerance has been studied in the
context of scalable parallel applications which allow
to make simulation of complex phenomena using large
scale cluster [10, 3]. Due to the number of unreliable
components involved during the computation, the ap-
parition of faults is not an exceptional event: the sys-
tem or the middleware should provide fault-tolerance
protocols so as to mask failures. The subject has been
well studied in the context of distributed systems and
distributed middlewares [4, 6]. The renewed interest
is that optimizing performance becomes a major objec-
tive. Recent propositions study the runtime behavior of
applications in order to specialize or extend published
protocols [9, 3].

The idea behind this research direction wants to au-
tomatically adapt a fault-tolerance protocol to the mini-
mal requirements of an application about dependability
features. This paper is in this context: the specialization
of fault-tolerance protocol is done at the level of an ab-
stract representation of the execution which permits im-
portant optimizations at runtime. We based our work in

∗This author is supported by a grant of the Syrian Government

the framework of KAAPI [10, 9], where the abstract rep-
resentation of execution was firstly designed to be able
to plug scheduling algorithms independently of applica-
tions. In [10] it was shown that this abstract represen-
tation is well suited for defining the checkpoint of local
process. In the context of this paper, this abstract repre-
sentation is used to specialize a fault-tolerance protocol
for long runtime iterative simulation.

Coordinated checkpoint/rollback protocols are
promising for large scale parallel applications because
they do not add extra overhead on communication and
current experiments demonstrate their availability to
scale up to thousands of processors [6, 3], including
the global synchronization. In case of fault, all the pro-
cessors restart from their most recent checkpoints, even
those which did not fail. The two challenging problems
about performances of coordinated checkpoint/rollback
protocols are:

1. How to speed up restart of processors after the oc-
currence of a fault?

2. How to reduce the amount of lost computation
time in case of fault?

In [6, 3] the solution to solve (1) is: each processor keep
a local copy of its checkpoint and send an other copy to
either a stable storage [3] or either to a fixed number
of neighbor processors [6]. Within this approach, all
processors except the failed processor, restart from their
local copy of the most recent checkpoint.

Our contribution is mainly to propose a solution for
(2). Thanks to the abstract representation of execution
of any KAAPI ’s applications, it is possible to compute
the strictly required set of computation to resend mes-
sages to the failed processor. Moreover by adapting
the local scheduling of tasks we present an optimization
that may improve this required computation without im-
pacting the parallel performance of the execution.

The outline of the paper is the following. The next
section deals with related works. Section three presents
our improved coordinated checkpoint/rollback protocol
for KAAPI applications. It begins with an overview of

1

the abstract representation in KAAPI, the definition of
the local state of process. Then we presents the proto-
col and an analysis of its complexity is sketched. The
next section presents preliminary experimentations on
virtual reality applications to simulate clothes using a
physical model. The conclusion ends the paper.

2 Related works

In this paper we deal with long runtime of parallel appli-
cations with high ratio communication versus the com-
putation. Such kind of applications appear during it-
erative simulation of physical phenomena: for instance
molecular dynamics [12], virtual reality [17] or domain
decomposition applications. Fault-tolerance protocols
have been classified in three categories: those based
on duplication to introduce redundancy of computa-
tions; protocols based on event logging and protocols
based on checkpoint/rollback approach. Because pro-
tocols based on duplication only tolerate a fixed num-
ber of faults and may consume a lot of resources they
are not selected [4, 6, 3] when the criteria is to mini-
mize the completion time. Log-based protocols assume
that the state of the system evolves according to non-
deterministic events (message reception in this case).
These events are logged in order to rollback from a pre-
vious saved checkpoint [4]. But experimentations [3]
have shown an important overhead for communication
intensive applications. Checkpoint/rollback protocols
periodically save the state of the local process of the
applications and have few overhead with respect to the
communication. They come in three forms. Uncoor-
dinated protocols make no assumption about the co-
herency of the global state captured and may be im-
pacted by the domino effect: in the worst case, the ap-
plication is required to be rollback at the beginning [16].
Coordinated protocols are based on global synchroniza-
tion to ensure that the set of local checkpoints forms a
global coherent state. Communication-Induced check-
pointing protocols [1] are a mix between coordinated
and uncoordinated protocols where forced checkpoints
are computed on receiving same messages.

3 Improved coordinated check-
point/rollback protocol

The idea of the CCK1 protocol is to build after occur-
rence of fault, the computation of every processors that
is strictly required to resend messages to the failed pro-
cessor. Thanks to KAAPI, the computation to re-execute

1Coordinated Checkpointing in Kaapi

is fewer than in classical coordinated protocols [4, 6, 3].
This section presents how to be able to reduce the num-
ber of instructions to be re-executed in the context of
KAAPI environment. We first describes the execution
model and the abstract representation of execution in
KAAPI. Then we deals with the improved coordinated
protocol.

3.1 Execution model and abstract repre-
sentation

In KAAPI an API, for instance Athapascan [5, 7], allows
to define the tasks and the data in global memory that
task produces or consumes. A task is closed to a func-
tion call with addition to the mode of access to the data
in the global memory (essentially read or write access).
At the difference of MPI, the communication is not ex-
plicit in K AAPI but deduce from the mapping of tasks
among the processors and the mode access to the global
memory. The reader interested in the API of KAAPI

may refer to [5, 7]. A runtime interpretation of some
instructions of the API allows to unfold the data flow
graph of the (future) execution of the program. Then
KAAPI schedules and executed them on processors.

At the base of the execution model is the macro
dataflow model. A dataflow graph [8] allows for a nat-
ural representation of a parallel execution, and it can
be exploited to achieve fault-tolerance [14, 10]. By the
principle of dataflow, tasks become ready for execution
upon availability of their input data. A dataflow graph
is defined as a directed graphG = (V, E), whereV is
a finite set of vertices andE is a set of edges represent-
ing precedence relations between vertices. The vertex
set consists of computational tasks, as seen in the tradi-
tional context of task scheduling, and the edge set rep-
resents the data dependencies between the tasks,i.e. an
edgeti → tj means that taskti produces data that task
tj consumes. Within the context of this researchG is
a dynamic graph,i.e. it changes during runtime as the
result of task creations or terminations.

This data flow graph is called theabstract repre-
sentationof the application because this representation
is casually connected to the (execution of the) applica-
tion: any new execution of instruction of the API is re-
ported by the creation of new vertices in the data flow
graph; and any modification in the data flow graph is
traduced to a modification in the execution of the ap-
plication. For instance, the scheduling algorithms that
are used to compute which tasks are affected by which
processes: the data flow graph is distributed among the
processes and the execution of the application reflect
this by having (generally) speedup in comparison to the
sequential execution.

2

Figure 1: Graphical representation of the abstract rep-
resentation of execution as data flow graph. Boxes rep-
resent global data. Ellipses represent tasks and edges
represent data that are produced or consumed by task.

During the distribution of the data flow graph, com-
munications are generated: task that produces data to
task mapped into different process is executed at run-
time by a inter-process communication.

The KAAPI has some assumptions and properties
about the way programs are scheduled and executed for
which presentation is outside the scope of this paper.

Proposition 1 Abstract ofKAAPI properties.

1. The sequential execution ofKAAPI is a valid exe-
cution order.

2. Any schedule that respects the data flow con-
straints between tasks is a valid schedule.

3. If two tasks have accesses to the same data in
global memory, then they share a same parent task.

3.2 Definition of a checkpoint

A copy of the abstract representation represents a con-
sistent global checkpoint of the application. In this re-
search, checkpoints are with respect to a process, and
consist of a copy of its localGi, representing a data
flow graph. The checkpointing protocol must ensure
that checkpoints are created in such a manner thatG is
always a consistent global application state, even if only
a single process is rolled back.

Definition 1 Thecheckpointof Gi itself consists of the
entries of the data flow graph, i.e. its tasks and their
associated inputs, and not of the task execution state on
the processor itself.

Understanding this difference between the two con-
cepts is crucial. Checkpointing the tasks and their in-
puts simply requires to store the tasks and their input
data as a dataflow graph. On the other hand, check-
pointing the execution of a task usually consists of stor-
ing the execution state of the processor as defined by
the processor context,i.e. the processor registers such
as program counters and stack pointers as well as data.
In the first case, it is possible to move a task and its in-
puts, assuming that both are represented in a platform-
independent fashion. In the latter case the fact that the
process context is platform-dependent requires a homo-
geneous system in order to perform a restore operation
or a virtualization of this state [18].

3.3 Coordinated protocol definition

The checkpointing protocol calledCoordinated Check-
pointing inKAAPI (CCK), was motivated by the method
presented in [11]. The protocol is coordinated by one
process at specific checkpoint periods. The algorithm
is sketches in figure 2.Pi denotes the process with in-
dex i. The process with index0 is assumed to be the
coordinator.

1. Synchronisation of all processes
1.1∀ i ∈ {0, ..., N} , send message START toPi

1.2 WaitN receptions of message ACK

2. Store local checkpoint

3. Continuation of all processes
1.1∀ i ∈ {0, ..., N} , send message CONT toPi

Figure 2: CCK protocol definition (coordinator code)

The role of the synchronization step is to flush
in-transit message in communication channel between
processes. Note that the protocol assumes that the
messages are FIFO ordered between pair of processes.
Upon reception of messages, all processes react using
the rules defined in figure 3.

If an error occurs during the execution of the check-
point phase of the protocol, then the phase is aborted
and the failed process is restarted.

3.4 Restarting failed process

The KAAPI environment contains a process manager
implemented on a reliable resource. The manager has a
global view of all processes and directs the rollback of
crashed processes by identifying the new processPnew

replacing the crashedPfailed.

3

1. If message received is START then
1.1. reset all counters for the CCK protocol
1.2. stop local computation
1.3.∀ i ∈ {0, ..., N} , send message FLUSH

2. If message received is CONT then
2.1. continue local stopped computation

3. If message received is FLUSH then
3.1 if number of such message isN + 1 then send
to coordinator message ACK

4. If message received is ACK then
4.1 if number of such message isN + 1 then
wakeup coordinator

Figure 3: Reactions to incoming message

In case of failure of processPfailed, a fault toler-
ance detector2 informs the manager to restart the pro-
cess. The newly created processPnew starts its compu-
tation from the previous checkpoint of processPfailed.
All other process will restart the strictly required set of
computation that will generates communication to des-
tinationPfailed in order to re-send lost messages.

Definition 2 Thestrictly required set of computation
for a processPi with respect to a processPk is the min-
imal set of tasks stored in the previous checkpoint ofPi

which are executed onPi and which produce data that
will be directly or not directly send toPk.

This operation is to compute the set of tasks that pro-
duce a data that will be send to processPfailed by ana-
lyzing the data flow graph stored in the previous check-
point of each processPi. The demonstration that all lost
messages is re-send is based on the properties of the
KAAPI execution model and the way the work is dis-
tributed among the processes. The coordination flushes
all in-transit messages which imply that the set of local
checkpoints is a global coherent state of the execution.
If Pfailed should have received a message fromPi, then
it imply that Pi has task that will produces a data con-
sumed by task inPfailed, this is a consequence of the
KAAPI properties presented in section 3.1.

Thus each local checkpoint of processPi (a data
flow graph with its inputs) representsall the future of
execution ofPi, including the tasks that produce data
send toPfailed. An analysis of the data flow depen-
dencies between tasks allows to compute the strictly re-
quired set of computation necessary to re-send data to

2We assumed that such detector is part of the fault-tolerance
framework, its presentation is outside the scope of this paper.

Pnew in place ofPfailed.
Figure 4 sketches the restart of a failed process

Pfailed.

1. Read the previous checkpoint ofPfailed

2. Analyze the data flow graph of the checkpoint in
order to compute the list of processes for whichPfailed

has to receive data

3. Send message RESTART to all these process

4. Restart local computation

Figure 4: Pseudo code of a processPnew that restart
processPfailed.

On reception of the message RESTART, the pro-
cessPi compute the strictly required set of computation
necessary to re-send data toPfailed and updated to send
to Pnew.

3.5 Complexity analysis

In this section we analyse the complexity of the exe-
cution with a fault in comparison to the complexity of
traditional coordinated checkpoint protocol [4, 6, 3] that
restart all processes when one is faulty.

The worst case of our protocol is the case where the
strictly required set of computation ofPi with respect to
Pfailed contains all executed tasks onPi. If it is true for
all processesPi, then the complexity of our protocol
is the complexity of the traditional protocols plus the
complexity to do the analysis of the data flow graph in
order to compute the strictly required set of computa-
tion. This latter complexity is linear with respect to the
number of tasks in the data flow graph to analyze.

Nevertheless, for some class of parallel applica-
tions, the complexity of our algorithm is lesser than tra-
ditional coordinated protocols on two points:

1. The number of processes involved in the restart of
Pfailed is less that the total number of processes
that have to restart for classical protocol. More-
over, this number may be a constant.

2. The number of tasks in thestrictly required set
of computationis generally less than the executed
tasks.

The point 1 is due to the fact that the knowledge of
the data flow graph permits to the protocol to know
the communication between processes. The point 2 is

4

due to the nature of the dependencies on some applica-
tion, especially in the case of numerical scalable simu-
lation application that exhibit good locality of (remote)
data accesses. Moreover, the number of tasks in the
strictly required set of computation may be decreased if
the scheduling of tasks try to execute first the tasks that
generate communications: at the period of the check-
pointing operation, such tasks will be not contained into
the checkpoint and thus they will do not be re-executed
again.

4 Case of study

In this paper, we present some results about of a cloth
simulation [19, 17] written on top of KAAPI using the
Athapascan API. This application is called SAPPPE. It
is a cloth simulation [2] that provides a 3D and realis-
tic modelling of dressed humans in real time. SAPPPE

is based on a physical model: a cloth is represented as
a triangular mesh of particles linked up by springs em-
ulate the material properties. The mesh topology de-
scribes how particles interact and exert forces on each
other.

The experiments were conducted on a cluster of
Grid50003. The cluster consists of 32 nodes intercon-
nected by a Fast Ethernet network. Each node features
two AMD Opteron processors (2.0 GHz) and 2 GB of
local memory.

4.1 Presentation of the parallelisation

The loop iteration of each simulation is composed of
two main parts: (1) Computation of forces that act on
each particle or atom; (2) Computation of each parti-
cle or atom states (acceleration, velocity, position) by
integrating the dynamic equations of the system.

To design parallel algorithms for such simulations,
computations are partitioned in a set of tasks. The tech-
nique is based on a particle decomposition [19]. It
consists in splitting the set of particles in several sub-
sets using algorithm of library such as Scotch [15] or
Metis [13]. The interactions between particles leads to
many data dependencies between tasks. The paralleli-
sation is achieve by unrolling the main loop over few
iterations (typically 2 or 3) and by computing a sched-
ule of the tasks generated. The same schedule will be
used to the tasks of the next iteration.

3http://www.grid5000.fr/

4.2 Cost of the CCK protocol

The experiment reported in figure 5 presents the times
of using the CCK protocol when the number of pro-
cessors is increasing. The deployment architecture uses
only one checkpoint server. The overhead of the exper-
iment with 2000 tasks with respect to the experiment
with 200 tasks is due to the bottleneck on the check-
point server. In fact, for the experiment with 2000 tasks,
checkpoint file of each process is about 300KBytes,
for 40 processors, the checkpoint server receives about
12MBytes of data.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

tim
e

(s
)

number of nodes

Cost of checkpointing for CCK

other nodes (#tasks=500)
other nodes (#tasks=2000)

coordinator (#tasks=500)
coordinator (#tasks=2000)

Figure 5: Times of the CCK protocol with respect to
the number of processes. Two experiments with 500
and 2000 tasks per process.

 0

 20

 40

 60

 80

 100

 120

 0.1 1 10

pe
rc

en
t o

f t
as

k
to

 r
ep

la
y

width/iterations

Number of task to replay

standard
cck

Figure 6: Average number of tasks to re-execute on a
process that communicates to process failed.

4.3 Average number of re-executed tasks

The figure 6 reports the number of tasks that is re-
executed using our protocol with a classical coordinated

5

protocol. The measures reported for alive process that
should redo message to the faulty process. The X-axe
is the iteration step when a checkpoint is done stored.
When the fault appears after the checkpoint, the num-
ber of tasks to re-executed is very small because most
of the communication tasks are in checkpoint due to the
schedule.

5 Conclusion

In this paper we have presented a new coordinated
checkpoint protocol for fault tolerance mechanism for
parallel iterative simulation. The originality of our work
comes from the abstract representation provided by the
KAAPI library for any parallel execution of applica-
tions. The main contribution is to show how to im-
prove classical coordinated checkpoint protocol by us-
ing a better knowledge of the application and especially
about the dependencies between processes due to com-
munication. We have shown that 1/ the number of pro-
cesses that require to redo computation may be small; 2/
the restart delay for all involved processes is generally
less than what is required by classical protocol. Ongo-
ing work is to experiment the protocol on a real grid.

References
[1] R. Baldoni. A communication-induced checkpointing

protocol that ensures rollback-dependency trackability.
In Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS ’97), page 68. IEEE
Computer Society, 1997.

[2] D. Baraff and A. Witkin. Large steps in cloth simulation.
In Computer Graphics Proceedings, Annual Conference
Series, pages 43–54. SIGGRAPH, 1998.

[3] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cap-
pello. Coordinated checkpoint versus message log for
fault tolerant mpi. InIn proceedings of The 2003 IEEE
International Conference on Cluster Computing, Honk
Hong,China, 2003.

[4] E. N. Mootaz Elnozahy, L. Alvisi, Y.-M. Wang, and
Johnson D. B. A survey of rollback-recovery proto-
cols in message-passing systems.ACM Comput. Surv.,
34(3):375–408, 2002.

[5] G. Cavalheiro M. Doreille F. Galilée, J.-L. Roch.
Athapascan-1: On-line building data flow graph in a par-
allel language. In IEEE, editor,Pact’98, pages 88–95,
Paris, France, October 1998.

[6] L. V. Kal é G. Zheng, L. Shi. Ftc-charm++: An
in-memory checkpoint-based fault tolerant runtime for
charm++ and mpi. In2004 IEEE International Confer-
ence on Cluster Computing, San Dieago, CA, Septem-
ber 2004.

[7] R. Revire J. L. Roch, T. Gautier. Athapascan: Api for
asynchronous parallel programming. Technical Report
RT-0276, www-id.imag.fr/software/ath1 , Projet
APACHE, INRIA, February 2003.

[8] T. UNGERER J. Silc, B. ROBIC.Asynchrony in parallel
computing: from dataflow to multithreading, pages 1–
33. Nova Science Publishers, Inc., 2001.

[9] S. Jafar, T. Gautier, A. Krings, and J-L. Roch. A
checkpoint/recovery model for heterogeneous dataflow
computations using work-stealing. InProceedings of
(LNCS) EuroPar’05, Lisboa, Portugal, August 2005.

[10] S. Jafar, A. Krings, T. Gautier, and J-L. Roch. Theft-
induced checkpointing for reconfigurable dataflow ap-
plications. In Proceedings of the IEEE Elec-
tro/Information Technology Conference EIT2005, Lin-
coln, Nebraska,U.S.A., May 2005.

[11] L. Lamport K. M. Chandy. Distributed snapshots: deter-
mining global states of distributed systems.ACM Trans.
Comput. Syst., 3(1):63–75, 1985.

[12] Laxmikant Kal, Robert Skeel, Milind Bhandarkar,
Robert Brunner, Attila Gursoy, Neal Krawetz, James
Phillips, Artiomo Shinozaki, Krishnan Varadarajan, and
Klaus Schulten. Namd2: greater scalability for parallel
molecular dynamics.J. Comput. Phys., 151(1):283–312,
1999.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Applications in
VLSI domain. Technical report, 1997.

[14] A. Nguyen-Tuong, A. S. Grimshaw, and M. Hyett. Ex-
ploiting data-flow for fault-tolerance in a wide-area par-
allel system. InProceedings 15 th Symposium on Reli-
able Distributed Systesm, pages 2–11, 1996.

[15] F. Pellegrini and J. Roman. Experimental analysis of the
dual recursive bipartitioning algorithm for static map-
ping. Technical Report 1038-96, 1996.

[16] B. Randell. System structure for software fault toler-
ance. InProceedings of the international conference on
Reliable software, pages 437–449, 1975.

[17] R. Revire, F. Zara, and T. Gautier. Efficient and easy
parallel implementation of large numerical simulation.
In Springer, editor,Proceedings of ParSim03 of Eu-
roPVM/MPI03, pages 663–666, Venice, Italy, 2003.

[18] V. Strumpen. Compiler technology for portable check-
points. Technical Report MA-02139, MIT Laboratory
for Computer Science, Cambridge, 1998.

[19] F. Zara, F. Faure, and J-M. Vincent. Physical cloth simu-
lation on a pc cluster. In X. Pueyo D. Bartz and E. Rein-
hard, editors,Fourth Eurographics Workshop on Paral-
lel Graphics and Visualization 2002, Blaubeuren, Ger-
many, September 2002.

6

