
A Distributed Event Service
for Adaptive Group Awareness

Dominique Decouchant1, Ana Maŕıa Mart́ınez-Enŕıquez2, Jesús Favela3,
Alberto L. Morán1,4, Sonia Mendoza1, and Samir Jafar1

1 Laboratoire “Logiciels, Systèmes, Réseaux”, Grenoble, France
{Dominique.Decouchant,Alberto.Moran,Sonia.Mendoza,Samir.Jafar}@imag.fr

2 Depto de Ingenieŕıa Eléctrica, CINVESTAV-IPN, D.F., México
ammartin@mail.cinvestav.mx

3 Ciencias de la Computación, CICESE, Ensenada, B.C., México
favela@cicese.mx

4 Facultad de Ciencias UABC, Ensenada, B.C., México

Abstract. This paper is directly focused on the design of middleware
functions to support a distributed cooperative authoring environment on
the World Wide Web. Using the advanced storage and access functions
of the PIÑAS middleware, co-authors can produce fragmented and repli-
cated documents in a structured, consistent and efficient way. However,
despite it provides elaborated, concerted, secure and parameterizable
cooperative editing support and mechanisms, this kind of applications
requires a suited and efficient inter-application communication service
to design and implement flexible, efficient, and adapted group awareness
functionalities.
Thus, we developed a proof-of-concept implementation of a centralized
version of a Distributed Event Management Service that allows to es-
tablish communication between cooperative applications, either in dis-
tributed or centralized mode. As an essential component for the develop-
ment of cooperative environments, this Distributed Event Management
Service allowed us to design an Adaptive Group Awareness Engine whose
aim is to automatically deduce and adapt co-author’s cooperative envi-
ronments to allow them collaborate closer. Thus, this user associated in-
ference engine captures the application events corresponding to author’s
actions, and uses its knowledge and rule bases, to detect co-author’s
complementary or related work, specialists, or beginners, etc. Its final
goal is to propose modifications to the author working environments,
application interfaces, communication or interaction ways, etc.

Keywords: Web cooperative authoring, distributed event management,
DEMS, adaptive group awareness inference engine, AGAIE.

1 Introduction

Collaborative authoring is a complex activity; it needs that requirements from
the production, coordination and communication spaces [2] be addressed. Based
on this, several studies (e.g. [1]) have identified a set of design requirements that

C.A. Coello Coello et al. (Eds.): MICAI 2002, LNAI 2313, pp. 506–515, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Distributed Event Service for Adaptive Group Awareness 507

collaborative authoring applications must support, including: enhanced commu-
nications, enhanced collaboration awareness [7] - focused and peripheral, and seg-
mented document and version control. The PIÑAS platform [6] addresses these
requirements by providing services for collaborative authoring on the Web. The
most important PIÑAS features are 1) Seamless distributed cooperative author-
ing, 2) Full integration to the existing Web environment, 3) Flexible and reliable
distributed cooperative architecture, 4) Document and resource naming based on
URLs, 5) Document replication for high availability, 6) Elaborated distributed
author management, 7) Automatic updating of replicated information, and 8)
Session Management and Group Awareness.

However, other needs can be identified besides these ones considering the
following scenario: Authors Domingo and Ana are writing a document, working
in two of its fragments. This information is shown by the awareness capabilities
of the platform (for instance, Radar View). Nevertheless, the first fragment is
an image (currently under modification by Domingo) and the second fragment
contains the related explanation or comments (currently under modification by
Ana). The resulting state of the document will most probably result in semantic
inconsistencies if both authors don’t become aware of the impact of their changes.

At the fragmentation and permission level, the inconsistencies will pass with-
out being noticed if both authors have the required permission to modify the
requested fragments. However, the changes performed to each fragment will indi-
rectly or directly affect the semantic consistency of the document. We highlight
that semantic consistency of concurrent productions also constitute a required
feature in a collaborative environment. Thus, we introduce the concept and the
need of an adaptive and deductive group awareness function based on the cap-
turing and treatment of the cooperating application events.

Inter-application Communication Mechanisms

Inter-applications communication mechanisms are a requirement of collaborative
applications and a challenge for their developers. Several studies have addressed
this issue and a generic model can be stated based on them: a producer element
generates information that may be of interest to consumers. A dedicated mech-
anism allows the information being produced to be delivered to consumers. In
point-to-point communications, the information is sent directly from the pro-
ducer to the consumer, and a unique Id for each of them is used as the addresses
for the communication (e.g. RPC) [10] and Java’s RMI [11]). In multicast com-
munications, the information is sent from a producer to a set of consumers (e.g.
CORBA Event Service [8], and Java Message Service (JMS) [12]). Further clas-
sification can be achieved by considering message-based and event-based com-
munication models.

We next present the Distributed Event Management Service (DEMS) de-
signed for PIÑAS, its implementation, and then introduce the Adaptive Group
Awareness Inference Engine (AGAIE) that we designed on top of the DEMS.

508 Dominique Decouchant et al.

2 Design of a Distributed Event Management Service

In the scope of the PIÑAS platform, designed to support a Web cooperative
authoring environment, we propose to develop specific mechanisms based on the
definition of a dedicated but extensible Distributed Event Management Service
(DEMS). Thus, the goal of this part of the work is to design the model and the
structure of DEMS that will be in charge of the transmission, management and
delivery of group awareness events among all applications (cooperative or not).

The DEMS receives events generated by the applications, manages them
(ordering and storage), and transmits them to subscribed applications. Thus,
the applications are independent of event transmission and of event diffusion.
Moreover, the problem of distributed event transmission concerns only to DEMS,
and so it’s application transparent.

To be generic, the PIÑAS platform provides the DEMS that allows it to be
used by different kinds of cooperative applications. This way, we plan to sup-
port multi-user applications capable of providing direct communications (syn-
chronous or asynchronous) among users. All these applications will be combined
to constitute a powerful cooperative environment.

From the conceptual point of view, the DEMS (see Fig. 1) is designed as
a component to which applications may 1) subscribe to receive notifications
(events), 2) perform special actions to configure both outgoing and incoming
event flows, and 3) send typed and parametrized events.

Event Service

Application
A

Application
B

Application
C

Event Filter

configuration subscription

event sending

subscription
 based
selection

notification

Fig. 1. Schematic Representation of the Distributed Event Management Service

By means of configuration, each application may restrict event diffusion,
defining the targeted users and/or applications authorized to receive the events.
In the same way, an application may define the kinds of events it is interested
in receiving, and only events of these types will be delivered to it.

The event service is a component of the PIÑAS platform, and it transparently
runs in both centralized and distributed environments. Thus, it provides support
to each application to notify events to other local or remote applications.

A Distributed Event Service for Adaptive Group Awareness 509

2.1 Producer / Consumer Agents

The DEMS has two different sets of clients: 1) “Producer Agents” which produce
events and transmit them to the service for diffusion, and 2) “Consumer Agents”
which subscribe to the service in order to receive and consume events.

To be able to send events, a Producer Agent must register itself to the DEMS
that returns to it a unique producer Id. Using this Id, the producer agent may
perform some configuration actions (see Fig. 1) to extend or restrict the diffusion
scope of its events. As an example, some users (i.e. A, B and C) who want to
establish a private cooperative session must precise to only diffuse the events to
their corresponding colleague’s applications.

In a symmetrical way, to capture only certain events, Consumer Agents must
provide some rules to filter event categories and/or sources (see Fig. 1).

2.2 Specification of the Distributed Event Management Service

An event is the information unit automatically produced each time an agent
performs an action on a shared or private object. To a lesser degree, actions
performed on private objects also are interesting to realize elaborated group
awareness functions (e.g. expert and novice matching).

Thus, an event is defined as a set of actions executed by an agent on objects1:

Event = Agent + {Object} + {Action + [Parameters]}

Agents

The notion of Agent includes the information that allows to identify the nature
of the entity that executes the actions on the objects. So, it is not sufficient to
identify the active entity (the author), but also the source of these actions (the
site and application Ids):

Agent = Author + Site + Application

This Agent naming principle is based on the PIÑAS author and site naming
conventions (see [6]). It maintains and uses the author definition for controlling
actions applied to shared resources (documents, images, author entities, etc), and
defining sets of roles (e.g. manager, writer, reader, chairman, speaker, reviewer,
etc) by which users can act. The role notion is essential to express the social
organization of the group work, and constitutes the base for protecting objects
from unauthorized actions.

Objects

An event is generated each time an object (usually shared) is accessed. The
object’s state is characterized by the values of its attributes. A document, a
document fragment, an author, and an event are representative examples of
1 The notation {entity} denotes the possibility to have more than one entity.

510 Dominique Decouchant et al.

objects. The granularity of handled objects may change from one application
to another or, more generally, the granularity of executed accesses on the same
object varies from one action to another in the same application. For example, a
document object is composed of objects of finer granularity such as fragments.

Actions

Actions provide information or represent the user’s work: working focus (selec-
tion), type of action (cut, paste, copy, open, save), type of object (text, image,
annotation), action dynamics (instant, frequency) and their specific attributes
(color, bold, plan, importance).

2.3 Configuration and Control of Event Production / Consumption

An important problem to keep in mind is the problem of exporting the variables
which compose the user’s working environment [9]. To solve this problem, the
DEMS provides configurable producer and consumer agents for controlling event
production and consumption.

The needs of users and hence the configuration of their work environments
evolve regularly in the course of time. These evolution requirements come from
their interactions and cooperative processes with other users. For example, in a
shared environment, collaborators might change their focus between individual
and cooperative work: when collaborators focus on their individual work, they
only need general information about the work of others. While they focus on
the collaborative task, information must be more specific and more precise. In
addition, by means of the shared environment interface, collaborators get familiar
with a domain, a task and a group. For example, if a collaborator learns the way
other colleagues work, then he can anticipate their actions, and adequate his
own, based on the actions they have performed.

Following this principle, a producer agent can authorize, refuse or limit the
publication of its events towards certain authorized consumers. Symmetrically,
a consumer agent can choose the set of producers.

Production_Ctrl = Agent + {Object + Action + {Autorized_Consumer}}
Consumption_Ctrl = Agent + {Object + Action + {Autorized_Producer}}

2.4 Event Transmission: A Distributed Service

Cooperative environments typically include group awareness applications (or
widgets) that are event producers and/or consumers. For example, cooperative
editors like Alliance [3] or AllianceWeb [4] (see Fig. 2) are both producers and
consumers of events produced by other co-author applications. Thus, a coop-
erative editor instance has to be aware of events generated by other co-author
applications to reflect and integrate their productions in the author’s working
environment. In quasi real-time mode, the “radar view” application has to show
the different author’s working focuses in all working environments.

A Distributed Event Service for Adaptive Group Awareness 511

Distributed Event
Management Service (DEMS)

 Site Y Site X

Internet

Inference
Engine

Inference
Engine

Radar
View

Cooperative
Editor Local Event

Manager
Local Event

Manager

Fig. 2. Event Transmission between Distributed Cooperative Environments

So, considering two users working on two different sites (see Fig. 2) who
are respectively using the AllianceWeb cooperative editor and the radar view
application: each authoring event has to be diffused both to the local user’s
radar view and to the remote editor and radar view.

Thus, the DEMS is a distributed PIÑAS service: on each site a local server of
this service acts as a concentrator of information (events) on the sender side and
as a demultiplexer on the receiver side (site X in Fig. 2). On the sender side, the
“Local Event Manager” (LEM) receives events generated by the local producer
applications, and if necessary it dispatches them to the local consumers. On the
receiver side (site Y in Fig. 2), the LEM instance will determine the applications
that are registered as event consumers and distribute the events to them.

Thus, the AGAIE (see section 4) that first appears as a pure consumer of
information will also act as an event producer generating/proposing quasi auto-
matic updating of the user cooperative environment (adaptation of the author
cooperative editing, proposition of new tools, co-authors, documents, resource
and tool appearances).

3 First Implementation of the DEMS

The event management service is a distributed system composed by a set of
Local Event Managers (LEM) that are connected together following the peer-
to-peer principle. As shown in Fig. 3, each LEM receives the events generated
by all local applications and stores them in a dedicated repository. In this event
repository, events are classified following their arrival date in the system: it is
important to note that no inter-event relation has been investigated and really
doesn’t appear necessary to establish within the event management system. In
a first step, only the production order seems to be relevant.

Thus, the events generated by different applications are mixed within the
manager’s event repository. For example (see Fig. 3), events β1, β2 and β3 of
the cooperative editor β are mixed with the events α1 and α2 of the cooperative
editor α.

512 Dominique Decouchant et al.

 β3 α1α2 β2 β1

LEM (Local Event Manager)

LEM LEM

 Site X

 α

 β

Internet

Inference
Engine

Radar
View

Cooperative
Editors

Fig. 3. Functional Principle of a Local Event Management Service

All events are stored in an ordered list implemented as a circular buffer. At
the same time the events are stored in the local storage event base, they are also
sent to other LEM that take part in the authors cooperative authoring sessions:
these remote sites own a local copy of the shared document, and so, they are
interested in obtaining all cooperative events related with this document. The
LEM service is based on the following principles and constraints:

1. Event Production – Each author works with a cooperative authoring ap-
plication that accesses the shared environment, and spontaneously generates
events. The application event layer captures these actions and generates la-
beled (order ticket) events that are transmitted to the LEM.

2. Event Consumption – To obtain events, each client connected to the event
manager has to use functions that handle a specific access descriptor. Using
and updating specific state variables, this descriptor maintains the current
state of event consumption.

3. Non Blocking Production – In all cases, this event distribution principle
ensures that producers will never be blocked: each event producer must be
able to produce new events even when the event storage area is full.

4. Limited Event Storage Space / Missed Events – If the limited event
storage space becomes full, new elements replace the oldest ones. So, if some
consumers (mainly observers) are slower than others, some events may be
discarded and so missed.

5. Dynamic Connection / Disconnection – The producer and consumer
applications may dynamically be connected or disconnected.

4 The Adaptive Group Awareness Inference Engine

One of the specific “group awareness” applications we targeted this study is the
design and the implementation of the “Adaptive Group Awareness Inference En-

A Distributed Event Service for Adaptive Group Awareness 513

gine” (AGAIE) whose goal is to define an Adaptive and Deductive Cooperative
environment [5].

Running on all co-author’s site, the AGAIE is a consumer of all events gen-
erated by the co-author’s applications (local and remote). Each AGAIE instance
makes an “on-the-fly” analysis of the different events it receives. This analysis
is performed in association with a knowledge base (rules and inferred data) that
is regularly consulted and updated. The final goal of the AGAIE is to deduce
information to propose modifications of the corresponding author environments.

The AGAIE functioning principle is organized following the three actions:

1. The management of a knowledge base – From the events managed
(stored, replicated and/or distributed) by the DEMS, the AGAIE deter-
mines and analyzes the corresponding working actions, their sequence and
frequencies, their scope of application, the focus and points of interests of
the co-authors, and the working and storage author locations.

2. The deduction of results on the base of pre-designed principles
(Rule Base) – A deductive system is assumed to work from past or known
facts to infer or predict new facts. Known facts are the actions already per-
formed by all cooperating authors during and/or out of the cooperative ses-
sion. New facts are particular information deduced from the action analysis.

3. The proposition of some new actions (inferred actions) – that are
proposed to be applied on the co-author environment(s).

Among many typical applications of the AGAIE principle (such as the de-
velopment of the communication between co-authors, coordination support of
authors, determination of common author interests, administration of user pref-
erences, etc), the automatic detection of “expert” and “novice” users constitute
a realistic and useful goal. Thus, it appears very useful to automatically detect
the areas of expertise of some authors in order to help others who had been
detected “in trouble” using some equivalent features.

Thus, based on the introduced DEMS, we are developing an AGAIE function
able to detect and give marks to the authors in order to automatically determine
both “specialists” and “novices/beginners” in the production of (for example)
drawings. This Inference Engine is based on:

1. Determining the focus and complexity of performed actions – A
knowledge base is constituted by the performed authoring actions. All events
have to be analyzed to determine their action focus, and if the action is re-
lated to a drawing, it is first stored and then its semantics is evaluated. For
example, the different actions may create, modify or delete a new graphical
item, or modify one of its attributes or to apply some structuring actions (ob-
ject group creation). During this phase, the point of interests of the author
is evaluated as well as the complexity of the performed actions.

2. Determining the user expertise level – From the analyzed actions, we
can add the temporal dimension: the actions are replaced in the temporal
sequence of actions, and an appreciation of the efficiency and the ability of
the author are produced. Thus, a user who generated many drawing editing

514 Dominique Decouchant et al.

actions during a quite long time and who only produced a “quite” simple
drawing, is classified as a “novice” or a user in trouble. In fact, the aim of
this work is quite complex trying to express in rules the definition of an
expert: “A drawing specialist is a user able to produce complex and high
structured drawings in a quite short time”. Of course, the problem is to well
express the notion of “complex and high structured drawing”, “poor or basic
drawing”, “short time”, etc.

3. Establishing “expert-beginner” relations – Then, after determining
some specialist and novice users, and regularly updating these evaluations,
the AGAIE may propose to a beginner to take a glance, to observe or to
analyze a specialist’s work, i.e. to be “closer” to the specialist’s working en-
vironment. Furthermore, the system may propose some special (synchronous
or asynchronous) tools to the specialist and the beginner to establish a co-
operative session where the specialist will be able to transfer his knowledge
and his experience, or at least to give helpful advice to the beginner.

Thus, the AGAIE acts as an event producer whose aim is to propose modifi-
cations to cooperative applications. To do that, all event propositions are trans-
mitted to other remote Inference Engine instances or LEMs (see Fig. 3). In this
way, we have defined a distributed cooperative system in continuous movement
that tries to help the co-authors to be more efficient in their group work.

5 Conclusion and Perspectives

In this work, we presented the design guidelines of a distributed event manage-
ment service (DEMS) for the PIÑAS platform. This platform, initially designed
to support distributed, cooperative and consistent production of documents on
the WWW, has been extended to support a fully cooperative environment that
includes both cooperative and non-cooperative applications. Currently provides
a dedicated service which offers simple but efficient and ad-hoc inter-application
notification and communication functions. To achieve this requirement, we de-
signed and implemented a first centralized version of the DEMS that takes
into account both the transmission and management of group awareness events
among cooperative applications, which are essentially considered as producers
and/or consumers of these events.

Also, we presented the example of AGAIE, an adaptive inference engine
whose main goal is to capture all produced/exchanged events among cooperative
applications. By analyzing these events on the fly using the inference rules of a
database and based on the already deduced properties or actions, the AGAIE
inference engine proposes actions to adapt co-author working environments in
order to make their collaboration more efficient.

The PIÑAS platform is currently being validated by the development of
the AllianceWeb cooperative Web browser/editor and a radar view application.
These applications along with the AGAIE inference engine and other PIÑAS
components, are being developed in parallel, to have them progressing in a con-
certed way.

A Distributed Event Service for Adaptive Group Awareness 515

Acknowledgements
This work is supported by the ECOS and ANUIES organizations (project
M98M01), by CONACyT projects (29729-A and 33067-A), by CNRS-CONACyT
projects (9018 / E130-505 and 10395 / E130-706), and by SEP-SESIC and UABC
(grant P/PROMEP: UABC-2000-08), with the scholarship UABC-125 provided
to Mr Alberto L. Morán.

References

1. R. Baecker, D. Nastos, I. Posner and K. L. Mawby, “The User-Centred Iterative De-
sign of Collaborative Writing Software”, In Proc. of ACM/SIGCHI and IFIP Con-
ference on Human Factors in Computing Systems (INTERCHI’93), ACM Press,
Amsterdam (Netherlands), pp. 399-405, 24-29 April 1993.

2. G. Calvary, J. Coutaz, and J. Nigay, “From Single User Architectural Design to
PAC*, a Generic Software Architecture for CSCW”, In Proc. of the Conference
on Human Factors in Computer Systems (CHI’97), ACM Press, Atlanta, Georgia
(USA), pp. 242-249, 22-27 March 1997.

3. D. Decouchant, V. Quint and M. Romero Salcedo, “Structured and Distributed
Cooperative Editing in a Large Scale Network”, Groupware and Authoring (Chap-
ter 13), R. Rada, ed., Academic Press, London (Great Britain), pp. 265-295, May
1996.

4. D. Decouchant, A. M. Mart́ınez and E. Mart́ınez, “Documents for Web Coopera-
tive Authoring”, In Proc. CRIWG’99, 5th International Workshop on Groupware,
IEEE Computer Society, Cancún (México), pp. 286-295, 15-18 September 1999.

5. D. Decouchant, A. M. Mart́ınez, “A Cooperative, Deductive, and Self-Adaptive
Web Authoring Environment”, In Proc. of the Mexican International Conference
on Artificial Intelligence (MICAI’2000), Lecture Notes in Artificial Intelligence,
Springer Verlag, Acapulco (México), pp. 443-457, 11-14 April 2000.

6. D. Decouchant, J. Favela and A. M. Mart́ınez-Enŕıquez, “PIÑAS: A Middleware
for Web Distributed Cooperative Authoring”, In Proc. of the 2001 Symposium on
Applications and the Internet (SAINT’2001), IEEE Computer Society and IPJ
Information Processing Society of Japan, San Diego, California (USA), pp. 187-
194, 8-12 January 2001.

7. A. L. Morán, J. Favela, A. M. Mart́ınez and D. Decouchant, “Document Pres-
ence Notification Services for Collaborative Writing”, In Proc. CRIWG’2001, 7th
International Workshop on Groupware, IEEE Computer Society, Darmstadt (Ger-
many), pp. 125-133, 6-8 September 2001.

8. Object Management Group., “CORBA Event Service Specification, Version 1.1”,
2001, http://www.omg.org/technology/documents/formal/event service.htm.

9. D. Salber, J. Coutaz, D. Decouchant and M. Riveill, “De l’observabilité et de
l’honnêteté : les cas du contrôle d’accès dans la Communication Homme-Homme
Médiatisée”, In Proc of the conference “Interface Homme-Machine” (IHM’95),
CEPAD, pp. 27-34, 1995 (In french).

10. Sun MicroSystems Inc., “RFC 1050, RPC: Remote Procedure Call Protocol Speci-
fication”, 1988, http://www.faqs.org/rfcs/rfc1050.html.

11. Sun MicroSystems Inc., “Remote Method Invocation Specification Version 1.3.0”,
1999, http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html.

12. Sun MicroSystems Inc., “Java Message Service Specification Version 1.0.2b”, 2001,
http://java.sun.com/products/jms/docs.html.

	1 Introduction
	2 Design of a Distributed Event Management Service
	2.1 Producer / Consumer Agents
	2.2 Specification of the Distributed Event Management Service
	2.3 Configuration and Control of Event Production / Consumption
	2.4 Event Transmission: A Distributed Service

	3 First Implementation of the DEMS
	4 The Adaptive Group Awareness Inference Engine
	5 Conclusion and Perspectives
	References

