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Abstract— Large applications executing on Grid or cluster ar-
chitectures consisting of hundreds or thousands of computational
nodes create problems with respect to reliability. The source
of the problems are node failures and the need for dynamic
configuration over extensive run-time. This paper presents two
fault-tolerance mechanisms called Theft Induced Checkpointing
and Systematic Event Logging. These are transparent protocols
capable of overcoming problems associated with both, benign
faults, i.e., crash faults, and node or subnet volatility. Specifically,
the protocols base the state of the execution on a dataflow graph,
allowing for efficient recovery in dynamic heterogeneous systems
as well as multi-threaded applications. By allowing recovery
even under different numbers of processors, the approaches are
especially suitable for applications with need for adaptive or
reactionary configuration control. The low-cost protocols offer
the capability of controlling or bounding the overhead. A formal
cost model is presented, followed by an experimental evaluation.
It is shown that the overhead of the protocol is very small and the
maximum work lost by a crashed process is small and bounded.

Index Terms— Grid computing, rollback recovery, checkpoint-
ing, event logging.

I. INTRODUCTION AND MOTIVATION

GRID and cluster architectures have gained popularity for
computationally intensive parallel applications. However,

the complexity of the infrastructure, consisting of computational
nodes, mass storage and interconnection networks, poses great
challenges with respect to overall system reliability. Simple tools
of reliability analysis show that as the complexity of the system
increases, its reliability, and thus Mean Time to Failure (MTTF),
decreases. If one models the system as a series reliability block
diagram [30], the reliability of the entire system is computed
as the product of the reliabilities of all system components.
For applications executing on large clusters or a Grid, e.g.,
Grid5000 [13], the long execution times may exceed the MTTF
of the infrastructure and thus render the execution infeasible. As
an example let us consider an execution lasting 10 days in a
system that does not consider fault-tolerance. Under the optimistic
assumption that the MTTF of a single node is 2000 days, the
probability of failure of this long execution using 100, 200, or
500 nodes is 0.39, 0.63 or 0.91 respectively, approaching fast
certain failure. The high failure probabilities are due to the fact
that, in the absence of fault-tolerance mechanisms, the failure of
a single node will cause the entire execution to fail. Note that this
simple example does not even consider network failures, which
are typically more likely than computer failure. Fault-tolerance
is thus a necessity to avoid failure in large applications, such as
found in scientific computing, executing on a Grid or large cluster.

The fault-tolerance mechanisms also have to be capable of
dealing with the specific characteristics of a heterogeneous and
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dynamic environment. Even if individual clusters are homo-
geneous, heterogeneity in a Grid is mostly unavoidable, since
different participating clusters often use diverse hardware or
software architectures [13]. One possible solution to address
heterogeneity is to use platform-independent abstractions such
as the Java Virtual Machine. However, this does not solve the
problem in general. There is a large base of existing applications
that have been developed in other languages. Re-engineering may
not be feasible due to performance or cost reasons. Environments
like Microsoft .Net address portability but only few scientific
applications on Grids or clusters exist. Whereas Grids and clusters
are dominated by unix operating systems, e.g. Linux or Solaris,
Microsoft .Net is Windows-centric with only recent or partial unix
support.

Besides heterogeneity one has to address the dynamic nature
of the Grid. Volatility is not only an intra-cluster issue, i.e.,
configuration changes within a cluster, but also an inter-cluster
reality. Intra-cluster volatility may be the result of node failures,
whereas inter-cluster volatility is caused by network disruptions
between clusters. From an administrative viewpoint the reality of
Grid operation, such as cluster/node reservations or maintenance,
may restrict long executions on fixed topologies due to the fact
that operation at different sites may be hard to coordinat. It is
usually difficult to reserve a large cluster for long executions, let
alone scheduling extensive uninterrupted time on multiple, per-
haps geographically dispersed, sites. Lastly, configuration changes
may be induced by the application as the result of changes of run-
time observable Quality of Service (QoS) parameters.

To overcome the aforementioned problems and challenges, we
present mechanisms that tolerate faults and operation-induced
disruption of parts or the entire execution of the application. We
introduce flexible rollback recovery mechanisms that impose no
artificial restrictions on the execution. They do not depend on the
pre-failure configuration and consider (1) node and cluster failures
as well as operation-induced unavailability of resources and (2)
dynamic topology reconfiguration in heterogeneous systems.

The reminder of the paper is organized as follows: In Section II
we present the necessary background information and related
work. Next, in Section III we describe the execution model
considered. Two rollback-recovery protocols are introduced in
Section IV and Section V. A theoretical performance and cost
analysis of these protocols is presented in Section VI, followed by
an experimental validation of the theoretical results in Section VII.
Finally, we conclude the paper in Section VIII.

II. BACKGROUND

Several fault-tolerance mechanisms exist to overcome the prob-
lems described in Section I. Each fault in a system, may it be
centralized or largely distributed, has the potential for loss of
information, which then has to be re-established. Recovery is
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thus based on redundancy. Several redundancy principles exit,
i.e., time, spatial and information redundancy. Time redundancy
relies on multiple executions skewed in time on the same node.
Spatial redundancy, on the other hand, uses physically redundant
nodes for the same computations. The final result is derived by
voting on the results of the redundant computations. However,
there are two disadvantages associated with redundancy:

1) Only a fixed number of faults can be tolerated depending on
the type of fault. This number of redundant computations
depends on the fault model, which defines the degree of
replication needed to tolerate the faults assumed [18], [29].
The exact types of faults considered, e.g. crash fault or
omission fault, and their behavior will be described later in
Subsection III-D.

2) The necessary degree of redundancy may introduce unac-
ceptable cost associated with the redundant parallel com-
putations and its impact on the infrastructure [24]. This is
especially true for intensive Grid computations [2].

As a result, solutions based on replication, i.e., time and spatial
redundancy, are, in general, not suitable for Grid computing where
resources are preferably used for the application itself.

In information redundancy, on the other hand, redundant infor-
mation is added that can be used during recovery to reconstruct
the original data or computation. This method is based on the
existence of the concept of stable storage [10]. One has to note
that stable storage is only an abstraction whose implementation
depends on the fault model assumed. Implementations of stable
storage range from simple local disks, e.g., to deal with the loss
of information due to transient faults, to complicated hybrid-
redundancy management schemes, e.g., configurations based on
RAID technology [21] or survivable storage [32].

We consider two methods based on stable storage, i.e., logging
and checkpointing.

A. Logging-based Approaches

Logging [1] can be classified as pessimistic, optimistic or
causal. It is based on the fact that the execution of a process can
be modeled as a sequence of state intervals. The execution during
a state interval is deterministic. However, each state interval
is initiated by a nondeterministic event [27]. Now assume that
the system can capture and log sufficient information about the
nondeterministic events that initiated the state interval. This is
called the piecewise deterministic assumption [27] (PWD). Then
a crashed process can be recovered by (1) restoring it to the
initial state and (2) replaying the logged events to it in the same
order they appeared in the execution before the crash. To avoid a
rollback to the initial state of a process and to limit the amount
of nondeterministic events that need to be replayed, each process
periodically saves its local state. Log-based mechanisms in which
the only nondeterministic events in a system are the reception of
messages is usually referred to as message logging.

Examples of systems based on message logging include
MPICH-V2 [7], and FTL-Charm++ [8]. A disadvantage of log-
based protocols for applications with extensive inter-process com-
munication is the potential for large overhead with respect to
space and time, due to the logging of messages.

B. Checkpointing-based Approaches

Rather than logging events, checkpointing relies on periodically
saving the state of the computation to stable storage [9]. If a fault

occurs, the computation is restarted from one of the previously
saved states. Since the computation is distributed, one has to
consider the tradeoff space of local and global checkpointing
strategies and their resulting recovery cost. Thus, checkpointing-
based methods differ in the way processes are coordinated and in
the derivation of a consistent global state. The consistent global
state can be achieved either at the time of checkpointing or at
the time of rollback recovery. The two approaches are called
coordinated and uncoordinated checkpointing respectively.

Coordinated checkpointing requires that all processes coordi-
nate the construction of a consistent global state before they write
the individual checkpoints to stable storage. The disadvantage is
the large latency and overhead associated with coordination. Its
advantage is the simplified recovery without rollback propagation
and minimal storage overhead, since each process only needs to
keep the last checkpoint of the global “recovery line”. This kind
of protocol is used e.g, in [26], [33].

Uncoordinated checkpointing on the other hand assumes that
each process independently saves its state and a consistent global
state is achieved in the recovery phase [10]. The advantage of
this method is that each process can make a checkpoint when
its state is small. However, there are two main disadvantages.
First, there is a possibility of rollback propagation which can
result in the domino effect [23], i.e., a cascading rollback to the
beginning of the computation. Second, due to the cascading effect
the storage requirement is much higher, i.e., each process needs
to store multiple checkpoints.

A compromise between coordinated and uncoordinated check-
pointing is communication-induced checkpointing. To avoid the
domino effect that can result from independent checkpoints of
different processes, a consistent global state is achieved by forcing
each process to take additional checkpoints based on some infor-
mation piggybacked on the application messages [3]. There are
two main disadvantages with this approach. First it requires global
rollback. Second, it can result in the creation, and thus storage,
of a large number of unused checkpoints, i.e., checkpoints that
will never be used in the construction of a consistent global state.
An example of a system using this approach is ProActive [4].

The essential issue in checkpointing and logging methods is
to determine what information should be stored in the check-
point or log. This information will determine the properties
and suitable environment of the rollback, e.g., homogeneous
versus heterogeneous system architecture or static versus dynamic
system configuration. A popular checkpointing library used in
systems like CoCheck [26], MPICH-V2 [7] and MPICH-CL [7]
is the Condor checkpoint library [19]. In Condor the information
constituting the checkpoint is the execution state of the process
and thus depends on the specific architecture of the platform
which executes the process. As a consequence, rollback is feasible
only on an identical platform and it requires the creation of a
replacement process. We will present below an approach that
overcomes both of these limitations, using an abstract state of
the execution represented by a dataflow graph. This generalizes
the approach used in the Satin parallel programming environ-
ment [31], which will be further discussed in Subsection VII-E.

III. EXECUTION MODEL

The general execution model of large Grid applications can be
viewed as having two levels, as shown in Figure 1. Level 0 only
creates the “abstraction of the execution state” of the application.
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This abstraction is then used by Level 1 to actually schedule and
thus execute the workload.
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Fig. 1. Execution Model

In Level 0 the program to be executed is viewed as an
abstraction that represents the state symbolizing the future of
an execution. By “future” we mean the execution that has not
unfolded yet. Specifically, the input to the virtual machine VM0 is
the sequential input program supplemented by instructions for the
run-time system that describe the parallelism of the application.
This is accomplished by two primitives called Task Creation and
Data Creation. Whereas the first creates (but does not execute)
an executable task, the latter creates a shared data object. The
sequential program language, together with these primitives, con-
stitutes language L0. Note that L0 is now a language supporting
parallelism.

Level 1 takes the abstraction of Level 0 and schedules tasks us-
ing the primitives Task Export, Task Import and Task Execution.
The sequential program language, together with these primitives,
constitutes the language L1. This language encompasses the
scheduling algorithm. Consequently, Level 1 implements the
dispatcher, whose decisions (which will affect the future of the
execution) will be executed at Level 0. In the figure this is
indicated with the arrow from the virtual machine VM1 to VM0.
Note that both levels represent the run-time system, however,
whereas the state of the execution is derived at Level 0, the
decisions about the future are made at Level 1.

The justification of the general execution model in Figure 1 is
that it is independent of the operating system and the hardware
architecture. Furthermore, it does not depend on the number
of resources, e.g., processors. As such, the execution model is
suitable for heterogeneous and dynamic target systems, e.g., large
clusters, Grid or peer-to-peer systems. We will now explain the
aforementioned abstraction of the execution state.

A. Dataflow representation

The representation of the state of an execution is based on
the principle of dataflow [25]. Dataflow allows for a natural
representation of a parallel execution and can be exploited for
fault-tolerance [20]. In a dataflow model, tasks, which are the
smallest units of execution, become ready for execution upon
availability of all their input data. The dependencies among tasks
are modeled in a dataflow graph, which is defined as a directed

graph G = (V, E), where V is a finite set of vertices and
E is a set of edges representing precedence relations between
vertices. A vertex vi ∈ V is either a computational task or a
shared data object. An edge eij ∈ E represents the dependencies
between vi and vj . Within the context of this research G is
a dynamic graph, i.e., it changes during runtime as the result
of task creations/terminations as well as shared data object
creations/deletions.

The dynamic dataflow graph should not be confused with the
static precedence graphs often used in scheduling theory. Here,
as tasks, data objects and their dependencies are created/deleted,
the graph changes. Within the context of the general execution
model, graph G is the representation of the global system state,
i.e., the “abstraction of the execution state” shown in Figure 1.

Whereas graph G is viewed as a single virtual dataflow graph,
its implementation is in fact distributed. Specifically, each process
Pi contains and executes a subgraph Gi of G. Thus the state of the
entire application is defined by G =

⋃
Gi over all processes Pi.

Note that this also includes the information associated with
dependencies between Gi and Gj , i 6= j. This is due to the fact
that Gi, by the definition of the principle of dataflow, contains all
information necessary to identify exactly which data is missing.

B. Work-stealing

The run-time environment and primary mechanism for load
distribution is based on a scheduling algorithm called work-
stealing [11], [12]. The principle is simple: when a process
becomes idle it tries to steal work from another process called
victim. The initiating process is called thief.

Work-stealing is the only mechanism for distributing the work-
load constituting the application, i.e., an idle process seeks to
steal work from another process. From a practical point of view
the application starts with the process executing main(), which
creates tasks. Typically some of these tasks are then stolen by
idle processes, which are either local or on other processors. Thus
the principal mechanism for dispatching tasks in the distributed
environment is task-stealing. The communication due to the theft
is the only communication between processes. Realizing that task
theft creates the only dependencies between processes is crucial
to understand the checkpointing protocol to be introduced later.

With respect to Figure 1, work-stealing will be the scheduling
algorithm of preference at Level 1.

C. The KAAPI environment

The target environment for multithreaded computations with
dataflow synchronization between threads is the Kernel for Adap-
tive, Asynchronous Parallel Interface (KAAPI), implemented as a
C++ library. The library is able to schedule programs at fine or
medium granularity in a distributed environment.

Figure 2 shows the general relationship between processors and
processes in KAAPI. A processor contains one or more processes.
Each process maintains its own stack.

The life-cycle of a task in the KAAPI execution model is
depicted in Figure 3 and will be described first from a local
process’ and then from a thief’s point of view in the context
of task stealing.

At task creation the task enters state created. At this time it is
pushed onto the stack. When all input data is available the task
enters state ready. A ready-task which is on the top of the stack
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Fig. 3. Life-cycle of a task in KAAPI.

can be executed, i.e., it can be popped off the stack, thereby
entering state executing. A task in the ready state can also be
stolen, in which case it enters the stolen state on the local process,
which now becomes a victim. When the task is finished, either on
the local process or a thief, it enters state finished and proceeds
to state deleted.

If a task has been stolen, the newly created thief process utilizes
the same model. In Figure 2, the theft of task Ts on Process 2
by Process i is shown, as indicated by the arrow. Whereas this
example shows task stealing on the same processor, the concept
applies also to stealing across processors. On the victim the stolen
task is in state stolen. Upon theft, the stolen task enters state
created on the thief. At this instant of time, the stolen task Ts

and a task Tr charged with returning the result are the only tasks
in the thief’s stack, as shown in the figure. Since a stolen task
by the definition of work-stealing is ready, it immediately enters
state ready. It is popped from the stack, thereby entering state
executing, and upon finishing, it enters state finished. It should be
noted that the task enters this state on the thief and the victim.
For the latter this is after receiving a corresponding message from
the thief. On both processes the task proceeds to state deleted.

D. Fault Model

We will now describe the fault model that the execution model
is subjected to. The hybrid fault model described in [29], which
defines benign, symmetric and asymmetric faults, will serve as
a basis. Whereas benign faults are globally diagnosable and thus
self-evident, symmetric and asymmetric faults represent malicious
faults which are either consistent or possibly non-consistent. In
general, any fault that can be detected with certainty can be dealt
with by our mechanisms. On one side this includes any benign
fault, such as a crash fault. On the other hand, this considers
node volatility [5], e.g., transient and intermittent faults of nodes.
It should be noted that results of computation of volatile nodes,
which re-join the system, will be ignored.

In order to deal with symmetric or asymmetric faults it is
necessary that detection mechanisms are available. Such ap-
proaches have been shown in [17], [16] and can be theoretically
incorporated in this work.

IV. THEFT INDUCED CHECKPOINTING

As seen in the previous section, the dataflow graph constitutes
a global state of the system. In order to use its abstraction for
recovery, it is necessary that this global state also represents a
consistent global state.

With respect to Figure 1, we can capture the abstraction of
the execution state at two extremes. At Level 0 one assumes
the representation derived from the construction of the dataflow
graph, whereas at Level 1 the interpretation is derived as the result
of its evaluation, which occurs at the time of scheduling.

In this section we will introduce a Level 1 protocol capable
of deriving a fault-tolerant coherent system state from the in-
terpretation of the execution state. Specifically, we will define
a checkpointing protocol called Theft Induced Checkpointing,
(TIC).

A. Definition of a checkpoint

As indicated before, a copy of the dataflow graph G represents a
global checkpoint of the application. In this research, checkpoints
are with respect to a process, and consist of a copy of its local
Gi, representing the process’ stack. The checkpointing protocol
must ensure that checkpoints are created in such a way that G is
always a consistent global application state, even if only a single
process is rolled back. The latter indicates the powerful feature
of individual rollbacks.

The checkpoint of Gi itself consists of the entries of the
process’ state, e.g., its stack. As such, it constitutes its tasks
and their associated inputs, and not the task execution state on
the processor itself. Understanding this difference between the
two concepts is crucial. Checkpointing the tasks and their inputs
simply requires to store the tasks and their input data as a dataflow
graph. On the other hand, checkpointing the execution of a task
usually consists of storing the execution state of the processor as
defined by the processor context, i.e., the processor registers such
as program counters and stack pointers as well as data. In the
first case, it is possible to move a task and its inputs, assuming
that both are represented in a platform-independent fashion. In the
latter case the fact that the process context is platform-dependent
requires a homogeneous system in order to perform a restore
operation or a virtualization of this state [28].

The jth checkpoint of process Pi will be denoted by CP j
i .

Thus the subscript denotes the process and the superscript the
instance of the checkpoint.

B. Checkpoint protocol definition

The creation of checkpoints can be initiated by (1) work-
stealing or (2) at specific checkpointing periods. We will first
describe the protocol with respect to work-stealing, since it is
the cause of the only communication (and thus dependencies)
between processes. Checkpoints resulting from work-stealing are
called forced checkpoints. Then we will consider the periodic
checkpoints, called local checkpoints, which are stored period-
ically, after expiration of pre-defined periods τ .

1) Forced checkpoints: The TIC protocol with respect to
forced checkpoints is defined in Figure 4, showing events A
through G for two processes P0 and P1. Initially P0 is executing a
task from its stack. The following sequence of events takes place:

1) A process P1 is created on an idle resource. If it finds a
process P0 that has a potential task to be stolen, it creates
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Figure 3. TIC protocol.

points. Then we will consider the periodic checkpoints,
called local checkpoints, which are stored periodically, after
expiration of the pre-defined periods τ .

3.2.1 Forced checkpoints

The TIC protocol is defined in Figure 3 with respect
to events A through G for two processes P0 and P1. Ini-
tially P0 is executing a task from its stack. The following
sequence of events takes place:

1. A process P1 is created on an idle resource. If it finds a
process P0 that has a potential task to be stolen, it cre-
ates a “theft” task Tt charged with stealing a task from
process P0. Before executing Tt, process P1 check-
points its state in CP 0

1 . Event A is the execution of Tt

which sends a theft request to P0.

2. Event B is the receipt of the theft request by P0. Be-
tween event B and C it identifies a task Ts and flags it
as “stolen by P1”. Between events B and C victim P0

is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this time P0 becomes a victim. Event D
constitutes sending Ts to P1.

4. Event E is the receipt of the stolen task from P0. Thief
P1 creates entries for two tasks, Ts and Tr, in its stack.
Task Tr is charged with returning the results of the ex-
ecution of Ts to P0 and becomes ready when Ts fin-
ishes.

5. When P1 finishes the execution of Ts it takes a check-
point and executes Tr, which returns the result of Ts to
P0 in event F.

6. Event G is the receipt of the result by P0.

3.2.2 Local checkpoints

Local checkpoints of each process i, i.e. Gi, are stored
periodically, after the expiration of the pre-defined period
τ . Specifically, after the expiration of τ a process receives

a signal to checkpoint. The process can now take a check-
point. However, there are two exceptions. First, if the pro-
cess has a task in state executing it must wait until execution
is finished. Second, if a process is in the critical section be-
tween events B and C in Figure 3, checkpointing must be
delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for process P0 before event B.

3.2.3 TIC rollback

The objective of TIC is to allow rollback of only crashed
processes. A process can be rolled back to its last check-
point. In fact, for each process only the last checkpoint is
kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
to consider the following two questions.

Q1 What does a process do that needs to send a message
to a crashed process?

Q2 How can a process that is rolled back receive messages
that it received after the last checkpoint and before the
crash?

With respect to Q1, the KAAPI environment contains a
process manager implemented on a reliable resource. The
manager has a global view of all processes and directs the
rollback of crashed processes by identifying the new pro-
cess P ′

i replacing the crashed Pi. An attempt to communi-
cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement process P ′

i

which it uses to resend the message.
With respect to Q2, the only messages received by a pro-

cess are (1) the theft request (event B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

Case (1): The loss of a theft request (event B) has no
consequences. The thief will simply time out waiting for a
response and make another request.

Case (2): If the thief crashes after receiving the stolen
task (event E), but before it was able to checkpoint, it is sim-
ply rolled back as P ′

1 to the initial checkpoint CP 0
1 where

it will re-request a task from P0 (event A). Victim P0, rec-
ognizing the redundant request, will change the state of Ts

from stolen to ready, thus nullifying the theft, and treats the
theft request as a new request.

Case (3): A crash of the victim after it has received the
result (event G) but before it could checkpoint would stall
the victim after rollback on P ′

0 to a state where the task is
still flagged as stolen. Therefore, the manager takes the last
checkpoint of the crashed P0 and inspects it for thefts, as
part of the rollback procedure. If it contains references to
a thief P1 that is already terminated, it rolls back P0 on P ′

0

CP
0
1

Fig. 4. TIC protocol: forced checkpoints.

a “theft” task Tt charged with stealing a task from process
P0. Before executing Tt, process P1 checkpoints its state
in CP 0

1 . Event A is the execution of Tt which sends a theft
request to P0.

2) Event B is the receipt of the theft request by P0. Between
event B and C it identifies a task Ts and flags it as “stolen
by P1”. Between events B and C victim P0 is in a critical
section with respect to theft operations.

3) Between event C and D it forces a checkpoint to reflect the
theft. At this time P0 becomes a victim. Event D constitutes
sending Ts to P1.

4) Event E is the receipt of the stolen task Ts from P0. Thief
P1 creates entries for two tasks, Ts and Tr , in its stack,
as shown in Figure 2. Task Tr is charged with returning
the results of the execution of Ts to P0 and becomes ready
when Ts finishes.

5) When P1 finishes the execution of Ts it takes a checkpoint
and executes Tr , which returns the result of Ts to P0 in
event F.

6) Event G is the receipt of the result by P0.

2) Local checkpoints: Local checkpoints of each process Pi

are stored periodically, after the expiration of the pre-defined
period τ . Specifically, after the expiration of τ a process receives
a signal to checkpoint. The process can now take a checkpoint.
However, there are two exceptions. First, if the process has a task
in state executing it must wait until execution is finished. Second,
if a process is in the critical section between events B and C,
checkpointing must be delayed until exiting the critical section. A
checkpointing scenario comprising local and forced checkpoints is
shown in Figure 5 where local and forced checkpoints are shown
unshaded and shaded respectively. Note that the temporal spacing
of the two local (unshaded) checkpoints on process P0 is at least
τ .
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Figure 3. TIC protocol.

points. Then we will consider the periodic checkpoints,
called local checkpoints, which are stored periodically, after
expiration of the pre-defined periods τ .

3.2.1 Forced checkpoints

The TIC protocol is defined in Figure 3 with respect
to events A through G for two processes P0 and P1. Ini-
tially P0 is executing a task from its stack. The following
sequence of events takes place:

1. A process P1 is created on an idle resource. If it finds a
process P0 that has a potential task to be stolen, it cre-
ates a “theft” task Tt charged with stealing a task from
process P0. Before executing Tt, process P1 check-
points its state in CP 0

1 . Event A is the execution of Tt

which sends a theft request to P0.

2. Event B is the receipt of the theft request by P0. Be-
tween event B and C it identifies a task Ts and flags it
as “stolen by P1”. Between events B and C victim P0

is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this time P0 becomes a victim. Event D
constitutes sending Ts to P1.

4. Event E is the receipt of the stolen task from P0. Thief
P1 creates entries for two tasks, Ts and Tr, in its stack.
Task Tr is charged with returning the results of the ex-
ecution of Ts to P0 and becomes ready when Ts fin-
ishes.

5. When P1 finishes the execution of Ts it takes a check-
point and executes Tr, which returns the result of Ts to
P0 in event F.

6. Event G is the receipt of the result by P0.

3.2.2 Local checkpoints

Local checkpoints of each process i, i.e. Gi, are stored
periodically, after the expiration of the pre-defined period
τ . Specifically, after the expiration of τ a process receives

a signal to checkpoint. The process can now take a check-
point. However, there are two exceptions. First, if the pro-
cess has a task in state executing it must wait until execution
is finished. Second, if a process is in the critical section be-
tween events B and C in Figure 3, checkpointing must be
delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for process P0 before event B.

3.2.3 TIC rollback

The objective of TIC is to allow rollback of only crashed
processes. A process can be rolled back to its last check-
point. In fact, for each process only the last checkpoint is
kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
to consider the following two questions.

Q1 What does a process do that needs to send a message
to a crashed process?

Q2 How can a process that is rolled back receive messages
that it received after the last checkpoint and before the
crash?

With respect to Q1, the KAAPI environment contains a
process manager implemented on a reliable resource. The
manager has a global view of all processes and directs the
rollback of crashed processes by identifying the new pro-
cess P ′

i replacing the crashed Pi. An attempt to communi-
cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement process P ′

i

which it uses to resend the message.
With respect to Q2, the only messages received by a pro-

cess are (1) the theft request (event B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

Case (1): The loss of a theft request (event B) has no
consequences. The thief will simply time out waiting for a
response and make another request.

Case (2): If the thief crashes after receiving the stolen
task (event E), but before it was able to checkpoint, it is sim-
ply rolled back as P ′

1 to the initial checkpoint CP 0
1 where

it will re-request a task from P0 (event A). Victim P0, rec-
ognizing the redundant request, will change the state of Ts

from stolen to ready, thus nullifying the theft, and treats the
theft request as a new request.

Case (3): A crash of the victim after it has received the
result (event G) but before it could checkpoint would stall
the victim after rollback on P ′

0 to a state where the task is
still flagged as stolen. Therefore, the manager takes the last
checkpoint of the crashed P0 and inspects it for thefts, as
part of the rollback procedure. If it contains references to
a thief P1 that is already terminated, it rolls back P0 on P ′

0

CP10
CP20

CP30 CP40

CP11 CP21 CP31

Fig. 5. TIC protocol: local and forced checkpoints.

3) TIC rollback: The objective of TIC is to allow rollback of
only crashed processes. A process can be rolled back to its last
checkpoint. In fact, for each process only the last checkpoint is
kept. We now present a theorem that proves that under TIC a
global consistent state of the execution is maintained.

Theorem 1: Under the TIC protocol the faulty processes can
be rolled back, while guaranteeing a consistent global state of the
execution.
Proof: In general, to show that a set of checkpoints form a
consistent system state, three conditions must be satisfied [22]:
IC1: There is exactly one recovery point for each process. IC2:
There is no event for sending a message in a process P after
its recovery point, whose corresponding receive event in another
process Q is before the recovery point of Q. IC3: There is no
event of sending a message in a process P before its recovery
point, whose corresponding receive event in another process Q
is after the recovery point of Q. The scenarios representing
conditions IC2 and IC3 are depicted in Figure 6.

P

Q

Condition C2
t

P

Q

Condition C3
t

Fault

Fault
x

x

Fig. 6. Sources of Inconsistency.

Proving that condition IC1 is met is trivial since TIC stores
only the last checkpoint in stable storage. In the remainder of
the proof of TIC we will consider all actions possible with
respect to the events and checkpoints shown in Figure 5. This
enumeration of events and checkpoints is exhaustive.

Part I: Let us assume that processes do not communicate. It is
well known that under this assumption a global consistent state of
an execution is guaranteed implicitly by using local checkpoints.
Thus in the absence of communication only the local process is
affected by the rollback. In the context of TIC this means that a
process that has not participated in any communication since its
last checkpoint, neither as a sender nor receiver, can be rolled
back unconditionally to that checkpoint. In Figure 5 this scenario
covers, for each checkpoint, the time interval which starts at
the time the checkpoint is established until the next event or
checkpoint. If t(CP j

i ) denotes the time at which checkpoint
CP j

i is established and t(X) denotes the time of event X,
then rollback during the following intervals will maintain a
consistent execution state: [t(CP 1

0 ), t(B)), [t(CP 2
0 ), t(D)),

[t(CP 3
0 ), t(G)), [t(CP 4

0 ),−) for process P0 and [t(CP 1
1 ), t(A)),

[t(CP 2
1 ), t([CP 3

1 )), and [t(CP 3
1 ), t(F )) for process P1. Note

that the intervals are open to the right, i.e. the right side of an
interval is the time before the event. Furthermore, symbol ‘–’
in [t(CP 4

0 ),−) indicates the time of the next event or checkpoint.

Part II: Now we prove that TIC can deal with rollback that
affects or is affected by communication, i.e. we need to show how
TIC effectively avoids inconsistency with respect to conditions
IC2 and IC3. Recall that the only communication in the system
is that due to task stealing, i.e. three communications per theft as
shown in Figure 5. An attempt to communicate with a crashed
process will result in failure, indicated by an error code generated



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2008 6

by the transport layer, e.g., transport control protocol TCP. This
error code is used to initiate actions with respect to IC2 and IC3.

We now present systematically, for each of the three
communications of TIC, the three possible fault cases as they
relate to the treatment of IC2, IC3 and a double fault. The
discussion is based on Figure 5.

Communication A to B – the theft request:
1) If thief P1 crashes such that it rolls back past event A,

condition IC2 arises. This presents no problem for the new process
P ′1 (replacing the crashed P1). P ′1 simply requests a theft from
another process. P0 on the other hand will detect the rollback
upon unsuccessfully attempting to communicate with the crashed
P1 (in event D), where it receives an error code. P0 thus voids
the theft, i.e., it un-labels task Ts and takes another checkpoint
reflecting its new state. Note that this checkpoint is a new version
of the checkpoint between C and D.

2) If victim P0 crashes after event B but before CP 2
0 , then

condition IC3 is introduced. However, this presents no problem
for P1 who simply times out while waiting for event E. P1 makes
another request.

3) A double fault implies that upon rollback of P1 as P ′1 the
re-initiation of event A returns an error. P ′1 will inquire about
replacement P ′0 for the non-responding process P0. If P ′0 has not
passed event B, then this constitutes a new theft request. If P ′0
has been restarted from CP 2

0 then P ′0 will detect that the thief
has also been rolled back upon an unsuccessful event D and will
void the theft. This is exactly the action the victim took in case 1).

Communication D to E – the actual theft:
1) If P0 fails after event D but before it could checkpoint then

condition IC2 arises. The (rolled back) victim will initiate another
event D to the same thief for the same request (indicated by CP 2

0 ).
This is recognized by P1 as a duplicate and is ignored.

2) If the thief crashes after the actual theft (event E), but before
it was able to checkpoint, then condition IC3 arises. The thief is
simply rolled back as P ′1 to the initial checkpoint CP 0

1 where it
will re-request a task from P0 (event A). Victim P0, recognizing
the redundant request, changes the state of Ts from stolen to
ready, thus nullifying the old theft, and treats the theft request as
a new request.

3) The victim is rolled back past event D and finds out the thief
does not respond; a double fault. Thus victim P ′0 inquires about
the replacement process P ′1. If P ′1 was initialized with CP 1

1 it
will find out about the new P ′0 as the result of a communication
error at event A. If P ′1 was rolled back with a checkpoint taken
after event E, then it takes a new CP 2

0 to reflect that P ′1 is the
rolled back thief.

Communication F to G – the return of the result to the victim:
1) If the thief crashes after event F then condition IC2 arises.

Upon re-initiating event E the victim will simply ignore the
duplication. Note that this can only occur in the tiny interval
after F and before P1’s termination.

2) A crash of the victim after it has received the result (event
G) but before it can checkpoint will result in condition IC3. This
would stall the victim after rollback to a state where the task is
still flagged as stolen, i.e. P ′0 would never receive the result in
event G. Therefore, as part of the rollback procedure, the victim
inspects the last checkpoint for tasks that have been flagged stolen.

If the victim’s checkpoint contains references to a thief P1 that is
already terminated, it rolls back P0 on P ′0 using the checkpoint
of P0 together with the thief’s final checkpoint containing the
result. Thus, the rollback uses G0 and G1 (which contains only
Tr). On the other hand, if the last checkpoint contains references
to thieves that are still executing, no action is required since the
thief, upon attempting to send the results to the old process P0,
will experience an error from the transport layer and will inquire
about P ′0.

3) If the thief is rolled back to CP 3
1 and finds out during event

F that the victim has crashed as well, it inquires about P ′0. P ′0
will have either been initiated with CP 2

0 or a checkpoint taken
after event D, say CP 3

0 . In the first case as the result of the error
during event D, P ′0 enquires about the replacement victim and
updates CP 2

0 . In the second case it will be waiting for event G,
which is coming from the replacement thief. The thief found
out about P ′0 as a result of the communication error at event F
during the attempt to reach the old victim.

Part III: So far we have proven that using TIC inconsistencies
are avoided. However, it remains to be established why the three
forced checkpoints shown (shaded) in Figure 5 are necessary. Let
CP 0

1 and CP f
1 denote the first and final checkpoint of a thief

P1 respectively. The initial checkpoint CP 0
1 guarantees that there

exists at least one record of a theft request for a thief that crashes.
Thus, upon a crash, the thief is rolled back on the new process P ′1.
Without CP 0

1 any crash before a checkpoint on the thief would
simply erase any reference of the theft (event E), and would stall
the victim. The final checkpoint of the thief, CP f

1 , is needed in
case the victim P0 crashes after it has received the results from
the thief, but before it could checkpoint its state reflecting the
result. Thus, if the victim crashes between event G and its first
checkpoint after G, then the actions describing Communication F
to G will ensure the victim can receive the result of the stolen
task.

It should be noted that the final checkpoint of the thief cannot
be deleted until the victim has taken a checkpoint after event
G, thereby checkpointing the result of the stolen task. Lastly,
the forced checkpoint of the victim (between events C and D)
ensures that a crash after this checkpoint does not result in the
loss of the thief’s computation, i.e., there will be a record that
allows the victim’s replacement process to find the thief.

The actions described in the proof above constitute a new gen-
eration of the protocol, i.e., the concept of a proactive manager, as
described in [14], [15], has been eliminated. It has been replaced
with a passive name server implemented on the same reliable
storage system that facilitates the checkpoint server.

V. SYSTEMATIC EVENT LOGGING

Whereas the TIC protocol was defined with respect to Level 1
of Figure 1, we will now introduce a Level 0 protocol called
Systematic Event Logging (SEL), which was derived from a
log-based method [1]. The motivation for SEL is to reduce the
amount of computation that can be lost, which is bound by the
execution time of a single failed task1. We will later elaborate on
the differences between TIC and SEL in their analysis presented
in Section VI.

1Recall that the task is the smallest unit of execution in the execution model.
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In SEL only the events relevant for the construction of the
dataflow graph are logged. Logging events for tasks are their
additions and deletions. Logging events of shared data objects are
their additions, modifications and deletions. A recovery consists
of simply loading and rebuilding subgraph Gi associated with the
failed process Pi from the respective log.

The SEL protocol implies the validity of the PWD hypothesis,
which was introduced in Subsection II-A. For the hypothesis to
be valid the following two conditions must hold:

C1: Once a task starts executing it will continue, without being
affected by external events, until its execution ends.

C2: The execution of a task is deterministic with respect to the
tasks and shared data objects that are created. Note that
this implies that the execution will always create the same
(isomorphic) dataflow graph.

At first sight condition C1 may appear rather restrictive. However,
this is not the case for our application domain, i.e., large parallel
executions, (see Equation 1 below).

If all tasks of a dataflow graph obey conditions C1 and C2,
then all processes executing the graph will comply with the PWD
hypothesis. The idea behind the proof of this theorem is simple.
In the execution model, the execution of tasks is deterministic,
whereas the starting time of their execution is non-deterministic.
However, this implies, in turn, that during the execution of a task
in the execution model, it itself will create the same sequence of
tasks and data objects.

In case of a fault, task duplication needs to be avoided during
rollback. Specifically, in the implementation one has to guarantee
that only one instance of a any given task can exist. In the
absence of such guarantee, it could happen that during rollback a
task recreates other tasks or data objects that already exist from
earlier failed executions. Note that, depending on the timing of
the fault, this could result in a significant number of duplicated
nodes, since each duplicated task itself may be the initiator of a
significant portion of computation. In our implementation of SEL
duplication avoidance is achieved using a unique and reproducible
identification method of all vertices in the graph.

VI. COMPLEXITY ANALYSIS

In this section we present a cost model for the TIC and SEL
protocol. But first we want to introduce the necessary notation
and analyze the general work-stealing model.

Let Tsec be the time of execution of a sequential program
on a single processor. Furthermore, let T1 denote the time of
the execution of the corresponding parallel program on a single
processor and let T∞ be the theoretical execution time of the
application as executed on an unbounded number of processors.
Thus T∞ represents the execution time associated with the
critical-path. It should be noted that in large executions suitable
for parallel environments we always have

T1 � T∞. (1)

Next, let Tp be the execution time of a program on p identical
physical processors. Then the execution of a parallel program
using work-stealing is bound by [11]

Tp ≤
T1

p
+ c∞T∞ (2)

where constant c∞ defines a bound on the overhead associated
with the critical-path, including the scheduling overhead. Further-
more, we have

T1 ≤ c1Tsec (3)

where c1 corresponds to the maximum overhead induced by
parallelism, excluding the cost of scheduling. The constants c1
and c∞ depend on the specific implementation of the execution
model and are a measure of the implementation’s efficiency.

To show how little impact the term c∞T∞ of Equation 2
has, one should note that the number of thefts performed by
any process2, denoted by Ntheft, which introduce the scheduling
overhead hidden in c∞ is small [11], [12], since

Ntheft ≤ O(T∞). (4)

Specifically, with T1 � T∞ we can approximate Equation 2
by Tp ≈ T1

p .

A. Analysis of Fault-free Execution

If we add a checkpointing mechanism, it is of special interest
to analyze its overhead associated with fault-free execution, since
the occurrence of faults is considered to be the rare exception
rather than the norm.

1) Analysis of TIC: In TIC, a checkpoint is performed (1)
periodically for each process, as dictated by period τ , and (2) as
the result of work-stealing. Let TTIC

P denote the execution of a
parallel program on p processors under TIC. Then,

TTIC
P ≤ Tp + max

i=1,...,p
{OverheadTIC

i }, (5)

where OverheadTIC
i denotes the total TIC checkpointing over-

head on processor Pi. This overhead depends on the total number
of checkpoints taken on processor Pi and the overhead of a single
checkpoint. The maximal number of checkpoints performed by
a processor is [TTIC

P /τ + O(Ntheft)], where TTIC
P /τ indicates

the number of checkpoints due to period τ and Ntheft is the
maximal number of thefts performed by any processor. Note that
we use O(Ntheft), since with respect to Figure 4 the number of
checkpoints of the thief and the victim are not equal.

The overhead of a single checkpoint in TIC is associated
with storing the collection of vertices in Gi and depends on two
parameters. First, it depends on the size of G. Specifically, it
depends on the number of tasks and shared data objects, as well
as the size of the latter. Second, it depends on the time of an
elementary access to stable storage, denoted by ts.

The number of vertices in Gi has an upper bound of N∞, which
denotes the maximum number of vertices in a path of G [11]. The
checkpoint overhead for processor Pi is thus bound by

OverheadTIC
i = [TTIC

P /τ +O(Ntheft)] f
TIC
overhead(N∞, ts). (6)

The function fTIC
overhead() indicates the overhead associated with

a single checkpoint and depends only on G, or more preceisly
N∞, as well as ts.

2We assume that at any given time at most one process is active on a
processor.
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2) Analysis of SEL: As defined in Section V, in SEL a
log is performed for each of the described events relevant for
the construction of G, i.e., (1) vertex creation, (2) shared data
modification and (3) vertex deletion. Recall that in G = (V, E) a
vertex vi ∈ V is either a task or a shared data object.

Let TSEL
P denote the execution of a parallel program on p

processors under SEL. Then TSEL
P can be expressed as

TSEL
P ≤ Tp + max

i=1,...,p
{OverheadSEL

i }. (7)

This overhead depends on the total number of vertices in Gi and
the overhead of a single event log. The maximal number of logs
performed by a processor is |Gi|, i.e., the number of vertices in
Gi.

The overhead of a single event log in SEL is associated with
storing a single vertex vj of Gi and depends on two parameters.
Specifically, it depends on the size of vj and the access time
to stable storage ts. Note that if vj is a task, then the log is
potentially very small and of constant size, whereas if it is a data
object, then the log size is equal to that of the object. The logging
overhead for processor Pi is thus bound by

OverheadSEL
i = |Gi|fSEL

overhead(|vj |, ts). (8)

The function fSEL
overhead() indicates the overhead associated with

a single log.

B. Analysis of Executions Containing Faults

The overhead associated with fault-free execution is the penalty
one pays for having a recovery mechanism. It remains to be shown
how much overhead is associated with recovery as the result of
a fault and how much execution time can be lost under different
strategies.

The overhead associated with recovery is due to loading and
rebuilding the affected portions of G. This can be effectively
achieved by regenerating Gi of the affected processes. Thus, the
time of recovery of a single process Pi, denoted by trecovery

i ,
depends only on the size of its associated subgraph Gi, i.e.,
trecovery
i = O(|Gi|). Note that for a global recovery, as the

result of the failure of the entire application, this translates to
max(trecovery

i ) and not to
∑

trecovery
i .

The way Gi is rebuilt for a failed process differs for the two
protocols. Under TIC rebuilding Gi implies simply reading the
structure from the checkpoint. For SEL this is somewhat more
involved, since now Gi has to be reconstructed from the individual
logs.

Next, we address the amount of work that a process can lose
due to a single fault. In TIC this is the maximal difference in
time between two consecutive checkpoints. This time is defined
by the checkpointing period τ and the execution time of a task,
since a checkpoint of a process that is executing a task cannot
be made until the task finishes execution. In the worst case, the
process receives a checkpointing signal after τ and has to wait for
the end of the execution of its current task before checkpointing.
Thus, the time between checkpoints is bound by τ + max(ci)

where ci is the computation time of task Ti. But how bad can
the impact of ci be? In a parallel application it is reasonable to
assume T∞ � T1. Since T∞ is the critical path of the application
any ci ≤ T∞. As a result one can assume ci to be relatively small.

In SEL, due to its fine granularity of logging, the maximum
amount of execution time lost is simply that of a single task.

However, this comes at the cost of higher logging overhead, as
was addressed in Equation 8.

C. Discussion

The overhead of the TIC protocol depends on the number of
theft operations and period τ . To reduce the overhead, one needs
to increase τ . However, this also increases the maximum amount
of computation that can be lost.

For SEL the overhead depends only on the size of graph G, i.e.,
its vertices vi which have to be saved. If one wants to reduce the
overhead one has to reduce the size of G. This however reduces
the parallelism of the application.

Comparing the TIC and SEL protocol makes only sense under
consideration of the application, e.g., number of tasks, task size
or parallelism. If T∞ � T1, given a reasonable value3 for τ ,
then the overhead of TIC is likely to be much lower than that
of SEL, i.e., given Equations 6 and 8, [TTIC

P /τ +O(Ntheft)] is
most likely much smaller than |Gi|, thus more than compensating
for fSEL

overhead(|vj |, ts) < fTIC
overhead(N∞, ts), as will be confirmed

by the results in Section VII. The reduced overhead has huge
implication on the avoidance of bottlenecks in the checkpointing
server(s). For applications with large data manipulations, TIC,
with an appropriate choice of τ , may be the only choice capable
of eliminating storage bottlenecks.

On the other hand, SEL addresses the needs of applications
with low tolerance for lost execution time. However, one has
to analyze the bandwidth requirements of logging in order to
determine feasibility.

It should be emphasized that the advantage of the TIC and
SEL protocols is that they do not require replacement resources
for failed processes, e.g., the failed process can be rolled back on
an existing resource. This is due to the fact that the state of the
execution is platform and configuration independent.

Lastly, we want to indicate that, even though the TIC protocol
has been motivated by Communication Induced Checkpointing
(CIC) [3], TIC has multiple advantages over CIC. First, unlike
CIC, in TIC only the last checkpoint needs to be kept in the stable
storage. This has potentially large implications on the amount
of data that needs to be stored. Thus, the advantage of TIC
is the reduction of checkpointing data as well as the time it
takes to recover this data during roll-back. The second significant
advantage is that in TIC only the failed process needs to be rolled
back. Note that in CIC all processes must be rolled back after a
fault.

VII. EXPERIMENTAL RESULTS

A. Application and platform description

The performance and overhead of the TIC and SEL protocols
were experimentally determined for the Quadratic Assignment
Problem (instance4 NUGENT 22) which was parallelized in
KAAPI. The local experiments were conducted on the iCluster25,
which consists of 104 nodes interconnected by a 100Mbps Ether-
net network, each node featuring two Itanium-2 processors (900
MHz) and 3 GB of local memory. The inter-cluster experiments

3Note that unreasonably small values of τ would result in excessive local
checkpointing.

4see http://www.opt.math.tu-graz.ac.at/qaplib/
5http://www.inrialpes.fr/sed/i-cluster2
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were conducted on Grid5000 [13], which consists of clusters
located at nine French institutions.

In order to take advantage of the distributed fashion of the
checkpoint, i.e., Gi, each processor has a dedicated checkpoint
server. This configuration has two advantages. First, it reflects
the theoretical assumptions of Section VI and second, the actual
overhead of the checkpointing mechanism is measured, rather
than the overhead associated with a centralized checkpoint server.

B. Fault-free Executions

We will now investigate the overhead of the protocols in
fault-free executions, followed by executions containing faults.
Then we show the results of a real-world example executing on
heterogeneous and dynamic cluster configurations. We conclude
with a comparison of both protocols with the closest counterpart,
i.e., Satin [31].

The impact of the degree of parallelism can be seen in Figure 7,
where the number of parallel tasks generated during execution
grows as the size of tasks are reduced. Recall that the number of
tasks directly relates to the size of graph G, which in turn has
implication with respect to the overhead of the protocols. The
degree of parallelism increases drastically for threshold 5 and
approaches its maximum at threshold 10.

# Tasks in QAP (NUGENT22S)

0

50000

100000

150000

200000

250000

3 5 8 10 15 22
Threshold of parallelism

Ta
sk

s

Fig. 7. Tasks and Application Granularity.

Figure 8 shows the execution times of the application for
different protocols in the absence of faults. Two observations
can be made. First, the application scales with the number of
processors for all protocols. Second, there is very little difference
between the execution times of the protocols for the same number
of processors. In fact, the largest difference among the executions
was observed in the case of 120 processors and was measured
at 7.6%. It is easy to falsely conclude that, based on the small
differences shown in the scenarios of Figure 8, all protocols
perform approximately the same. The important measure of
overhead of the mechanism is the total amount of data associated
with the protocol that is sent to stable storage. This overhead is
affected by the total size and the number of messages. Due to
the efficient, distributed configuration of the experiment, which
may not be realistic for real-world applications, this overhead was
hidden and thus does not show in the figure. Figure 9 addresses
this cost, i.e., the cost of the fault-tolerance mechanism that

QAP(NUGENT 22s , Threshold of parallelism = 8)

0

200

400

600

800

1000

1200

1400

1600

1800

Time (S) 

20 40 60 120# processors

Tp

Tp with SEL

Tp with TIC (1s)

Tp with TIC (20s)

Fig. 8. Execution Times of Protocols.

the infrastructure has to absorb, and shows the total volume of
checkpointing and logging data stored. The advantages of TIC
can be seen in the significant reduction of data, which is most
visible for larger periods τ . Furthermore, the data volume stays
relatively constant for different number of processors. This is
due to the fact that the number of thefts, and thus theft-induced
overhead, is actually very small, as was explained in Section VI.
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C. Executions with Faults

To show the overhead of the mechanisms in the presence of
faults, we consider executions containing faults. First, we want
to measure the cost induced by the computation lost due to the
fault(s) and the overhead of the protocols. Specifically, for each
protocol we show

Twithfault
p − T ′p

T ′p
(9)

where Twithfault
p is the time of execution in the presence of faults

and roll-back, and T ′p is the time of a fault-free execution.
Figure 10 shows the measured cost using Equation 9 for

different numbers of faults. The interpretation of T ′p is the
execution time of the application including the overhead of the
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Fig. 10. Overhead of Rollback.

checkpointing or logging mechanism. One can observe that, as
the number of faults increase, the execution time grows linearly.
Note that, since the overhead of the protocols is included in T ′p,
the values displayed are the computation time lost due to the
faults as well as the overhead of roll-back, but do not contain the
overhead of checkpointing or logging. As expected, and discussed
in Subsection VI-C, the computation lost using SEL is lower than
that under TIC, since in SEL only the computation of failed
tasks are lost. For the experiment the period in TIC was set at
τ = 1s and the mean task execution time was 0.23s.

However, Figure 10, with its interpretation of T ′p, does not ac-
count for the overhead of checkpointing or logging. This overhead
was included in the measurement shown in Figure 11. Now T ′p in
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Fig. 11. Total Overhead considering Faults.

Equation 9 is the execution time of the application without any
fault-tolerance protocol, i.e., neither SEL nor TIC. The mea-
surements reveal that the actual overhead of SEL overshadows
its advantages shown in Figure 10. Specifically, accounting for the
overhead of checkpointing (of TIC) and logging (of SEL), the
real advantage of lower checkpointing overhead of TIC surfaces.

D. Application Executing on Heterogeneous and Dynamic Grid

Next we show an application of TIC in a heterogeneous
Grid. Four clusters of Grid5000 (geographically dispersed in
France) were used, utilizing different hardware architectures. The
execution clusters used AMD Opteron, Intel Xeon and PowerPC
architectures respectively, whereas the stable storage cluster used
Xeons. Figure 12 summarizes several experiments. First, the
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Fig. 12. QAP Application on Grid5000.

entire application was executed on each of the three execution
clusters using 30 computational nodes. The respective execution
times are shown in the three bars to the left.

Next, the application was executed on all three execution
clusters, using 10 nodes on each cluster. Thus the total number of
processors available to the application was again 30. The fourth
bar of Figure 12 shows the time of the fault-free execution (175
seconds) using no fault-tolerance protocol at all. Next, the same
experiment was repeated using the TIC protocol with τ = 5s.
The result is shown in the fifth bar peaked at 185 seconds.
The difference in execution times between this and the previous
scenario is entirely due to the overhead of TIC and its remote
checkpointing. Finally, an execution with fault in the PowerPC
cluster was considered. Specifically, after 50% of the application
had executed a fault was injected that affected all 10 nodes
of the PowerPC cluster, i.e., the cluster was lost. The affected
part of the execution rolled back and finished execution on the
remaining 20 processors. One can see (in the bar to the right
indicating 216 seconds) that the execution tolerated the cluster
fault exceptionally well, resulting in an overall execution time
which was only 17% larger than that of the fault-free case, even
though one entire cluster was permanently lost. Furthermore, the
rollback was across platforms, i.e., the computations of the failed
cluster was dynamically absorbed by the two remaining clusters
using different hardware architectures.

E. Comparison with Satin

A fault-tolerant parallel programming environment similar to
the approach presented above is Satin [31]. In fact, the Satin
environment follows the general execution model presented in
Figure 1. However, the abstraction of the execution state is a
series-parallel graph, rather than the dataflow graph. As such
Satin only addresses recursive, series-parallel programming appli-
cations. In Satin fault-tolerance is based on redoing the work lost
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by the crashed processor(s). To avoid redundant computations,
partial results, which are stored in a global replicated table, can
later be reused during recovery after a crash.

To compare the performance of TIC with Satin a different
application was used, i.e., a recursive application resembling a
generalization of a Fibonacci computation. Figure 13 shows the
result of executions of both approaches for different fault sce-
narios. Specifically, for each approach first an execution without
fault is shown. Next a single fault was injected after 25%, 50%
and 75% of the execution had completed. To eliminate the impact
of the different implementation languages and execution environ-
ments on the execution times, i.e., C++/KAAPI and Java/Satin,
the measurements presented in the figure are relative to the
execution times in their respective environments. As can be seen,
the cost in Satin is significantly higher than that in KAAPI/TIC,
which used τ = 1s. The reason is that in Satin all computations
affected by the fault are lost. In fact, the loss is higher the
later the fault occurs during the execution. This is not the case
in TIC where the maximum loss is small, i.e., τ + max(ci)

as was shown in Subsection VI-B. Thus TIC overcomes this
performance deficiency of Satin.

On the other hand, the TIC protocol is pessimistic in the
sense that processes are always checkpointed to anticipate a future
failure. The result is that for fault-free executions the Sating
approach has lower overhead than TIC. However, as was shown
in Subsection VII-B, the overhead of TIC is very small.

For applications with small computation times (linear or quasi
linear) Satin also tends to perform better than TIC. The reason
is that the time to recompute solutions under Satin may be less
than the overhead associated with writing checkpoints to stable
storage. However, such applications are difficult to parallelize due
to the low computation/communication ratio.

To compare the performance of TIC with Satin a different application was used, i.e., a recursive
application resembling a generalization of a Fibonacci computation. Figure 12 shows the result of exe-
cutions of both approaches for different fault scenarios. Specifically, for each approach first an execution
without fault is shown. Next a single fault was injected after 25%, 50% and 75% of the execution had
completed. To eliminate the impact of the different implementation languages and execution environ-
ments on the execution times, i.e., C++/KAAPI and Java/Satin, the measurements presented in the figure
are relative to the execution times in their respective environments. As can be seen, the cost in Satin
is significantly higher than that in KAAPI/TIC, which used τ = 1s. The reason is that in Satin all
computations affected by the fault are lost. In fact, the loss is higher the later the fault occurs during the
execution. This is not the case in TIC where the maximum loss is small, i.e., τ +max(ci) as was shown
in Subsection 6.2. Thus TIC overcomes this performance deficiency of Satin.
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8 Conclusions

To overcome the problem of applications executing in large systems where the MTTF approaches or
sinks below the execution time of the application two fault-tolerante protocols, TIC and SEL, were
introduced. The two protocols take under consideration the heterogeneous and dynamic characteristics
of Grid or cluster applications and pose limitations on the effective exploitation of the underlying in-
frastructure. The flexibility of dataflow graphs has been exploited to allow for a platform-independent
description of the execution state. This description resulted in flexible and portable rollback recovery
strategies.

SEL allowed for rollback at lowest level of granularity, with a maximal computational loss of one
task. However, its overhead was sensitive to the size of the associated dataflow graph. TIC experienced
lower overhead, related to work-stealing, which was shown bounded by the critical path of the graph.
By selecting an appropriate application granularity for SEL and period τ for TIC the protocols can be

Fig. 13. Comparison of Satin with KAAPI/TIC using 32 Processors.

VIII. CONCLUSIONS

To overcome the problem of applications executing in large
systems where the MTTF approaches or sinks below the execution
time of the application, two fault-tolerant protocols, TIC and
SEL, were introduced. The two protocols take under consid-
eration the heterogeneous and dynamic characteristics of Grid
or cluster applications that pose limitations on the effective
exploitation of the underlying infrastructure. The flexibility of
dataflow graphs has been exploited to allow for a platform-
independent description of the execution state. This description
resulted in flexible and portable rollback recovery strategies.

SEL allowed for rollback at the lowest level of granularity,
with a maximal computational loss of one task. However, its
overhead was sensitive to the size of the associated dataflow
graph. TIC experienced lower overhead, related to work-stealing,
which was shown bounded by the critical path of the graph.
By selecting an appropriate application granularity for SEL and
period τ for TIC the protocols can be tuned to the specific
requirements or needs of the application. A cost model was
derived, quantifying the induced overhead of both protocols.
The experimental results confirmed the theoretical analysis and
demonstrated the low overhead of both approaches.
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