Seeking low-power synchronous/asynchronous embedded
systems: an FIR implementation case study

Ali Skaf', Jean Simatic? and Laurent Fesquet®

" Syrian Private Unjversity - Damascus - Syria
ali.skaf@spu.edu.sy

Abstract

Seeking low-power consumption high-performance
embedded systems has been at the center of interest for
researchers around the world for the last decades,
especially with the recent boom of different hand-held
battery-operated mobile connected devices. The pew
trends and needs of faster, smarter and smaller internet
connected systems. also known as the IoT, require
developing very low-power embedded systems including
actuators, sensors and signal processors. In this paper,
we focus on the architecture optimization efforts 1o
reduce the required actvity using the FIR filter as a
demonstration example. The new optimized
implementation of the FIR filter was compared with
oiher synchronous and asynchronous FIR filter versions
realized using the ALPS framework developed at TIMA
laboratory. The obtained FIR architeciure exhibils
arvund 33% area 52% puwer cunsumption reduction
compared fo the best previous synchronous
implementation. We plan to use these results to improve
the automatically generated datapath of the high-level
synthesis tool of our framework (ALPS-HLS).

Keywords: low-power embedded systems, loT,
optimized synchronous design, event-driven sampling,
asynchronous circuits.

1. Introduction

Reducing the power consumption of embedded systems
and devices raise critical power issues, especially in
battery-powered connected applications or the Internet of
Things (IoT). These issues have pushed research
communities around the globe to seek smart very low-
power design solutions. Many possible tracks have been
explored in order to reduce the power consumption of
such systems invoking removing, or at least reducing, the
clock activity, being the major source of power
consumption in digital systems. In asynchronous
systems, we look for simply eliminating the clock signal
at the expense of new design methodology. While in
synchronous systems, we try to reduce the clock activity
whenever possible using basically different techniques of
clock gating to switch off the inactive parts of the
embedded system. Nevertheless, data processing tasks
that represent a major part of power consumption cannot
be avoided. Thus, there is an obvious need of
implementing the data processing tasks using the less

TIMA Laboratory INPG/CNRS - Grenoble - France
jean.simaticlwimag. fr — laurent. fesquet@imag. fr

activity demanding architecture. In the traditional
synchronous design schemes, designers tend to reduce
the clock activity of the inactive parts, or to propose
schemes based on adapting the data processing with the
nature of treated data. For instance, non-uniform
sampling can be used digital signal processing systems
[11-[5]. Unlike typical uniform sampling strategies, the
sampling takes place only when the signal crosses certain
threshold wvalues (statically or dynamically defined),
providing natural data compression for communication
or storage. The so called level-crossing sampling scheme
(LCSS) [6] restricts the switching activity through the
circuits, reducing by consequence the system’s power
consumption.

Other solutions rely on simply removing the clock signal
and replace it with handshake protocol giving what is
commonly named asynchronous systems. These systems
are well-suited to handle the data flow irregularity of
non-uniform sampling schemes. Moreover,
asynchronous designs consume power only when data
are being processed, and they can virtually offer higher
performance than worst case, increased robustness, and
thus better electro-magnetic compatibility [7]-[9].

In both the cases of synchronous and asynchronous
systems, optimization efforts were centered on the
system dataflow and how to control the system
functioning to reduce the communication with the
outside world. Yet there are issues that merit further
exploring related to the data processing in the datapath
itself and how to better choose the processing blecs and
how to (re)organize the datapath in order to reduce the
power consumption. This effort can even imply using
other arithmetic representation systems and tools like, for
instance, redundant number systems as the Signed
Binary Digit (SBD) system and other on-line arithmetic
operators [10] [T1].

This work proposes to show the impact of such an
optimization effort applied to Finite Impulse Response
(FIR) filter implementation. FIR filters are widely used
in the digital signal processing blocs of communicating
embedded systems and devices, Previous
implementations carried out at TIMA laboratory
demonstrated the ocutcome of applying different power
consumption reducing methodologies as the non-uniform
sampling, the synchronous/asynchronous manual and
automatic implementations using the dedicated
framework ALPS (Architectural tools for ultra-Low

Power (event-driven) Systems) and the synchronous-
dedicated HLS tool AUGH [12].

We start by reviewing the basics of FIR algorithm in
section 1. Section II will summarize the previous
implementations carried out at TIMA and their
characteristics. The proposed architecture optimization is
detailed in section III, while the filter obtained
synchronous implementation performance will be given
in section |V along with the comparison with the other
versions before concluding.

I- FIR basics

To filter an input signal x generating an output filtered
signal y, the FIR algorithm can be expressed as follows:
If we denote x,, . and k. as respectively the i samples of
the input signal x, output signal v, and impulse response,
Then, the output samples are computed applying the

equation:
N

Vi = Zxk—i My

=0

The straightforward parallel implementation is composed
of (N+1) registers to form a delay line, (N+1) multipliers
to compute the different (x;.h;) products, and N adders to
form y,. To reduce the required hardware, we can choose
a serial implementation using only one multiplier and
one adder with an extra storage register for the partal
results and a dedicated ROM (or decoder) to supply the
h; values. This design requires also a control part to
generate the needed datapath control signals. In the case
of a 32-order filter with samples represented on 8§ bits,
the obtained serial architecture 1s shown in Fig. [.

Selx (5 bits)

—_—
| —
Scih (S bits)
Delay line 32 (3bir \'é‘jml B h‘
] ROM

Register

Yy

Fig.l : 32-order FIR filter serial implementalion.

It is to be noticed thar:

I- In case of a traditional synchronous functioning, for
each entered input sample, 32 clocks are required to
compute the corresponding output. The commercial
synthesis tools, such as used among others in Altera
Quartus Il or Xilinx Vivado, can simply generate the
datapath and control parts starting from an HDL
description.

2- This architecture can be desynchronizead using already
existing asynchronous High-Level Synthesis (HLS) tools
like TIDE [13] and Balsa [14] but the outcome depends
on the designer ability to write appropriate HDL code.

II- Previous FIR
implementations

synchronous/asynchronous

Efforts have been deployed to build a complete
framework to help designers to develop asynchronous
designs. The methodology consists of using a
synchronous tool AUGH [15], which provides support
for a standard programming language — a subset of ANSI
C — and a wider set of possible transtormations such as
loop unrolling and memory type selection. AUGH
generates a synchronous synthesizable RTL description
of the datapath and the specification of the synchronous
FSM. Then, the synchronous FSM is desynchronized to
derive the asynchronous control. The asynchronous FSM
uses distributed late-capture controllers [16]. The late-
capture protocol requires dedicated conditional
branching components, which were specified and
designed [17]. The proposed desynchronization method
is specific to FSMs, unlike generic methods such as [18].
To validate the effectiveness of the framework, three FIR
filter implementations, of a 32-order low-pass filter with
a normalized sampling frequency of | and a cut-off
normalized frequency of 1/44.1, were discussed and
compared in terms of area, computation time and energy
consumption [17], namely:

1) a typical synchronous FIR filter (Fig.1),

2) an asynchronous filter for non-uniformly sampled
signals manually designed at the RTL level,

3) the same asynchronous filter automatically generated
by ALPS HLS.

[n fact, in implementations 2) and 3) the case of non-
uniform sampling was considered using an interpolation-
based algorithm [19]. This approach is based on setling
discrete levels and then sampling the input signal
whenever it crosses one of the two neighboring levels.
The interpolation scheme adopted in these
implementations is a piece-wise constant interpolation,
vet other schemes are possible but lead to more complex
computations [20]. The hardware required for the
datapath is more complex than implementation 1) as two
multipliers are needed. Notice that these asynchronous
implementations have actually a synchronous-like
datapath operated by an asynchrounous control part.

The comparison of the three different implementations,
in 350nm and in 40nm technologies, in response to a sum
of sines (SS) and an ECG signals was carried out. Taking
the synchronous implementation as a reference,
automated asynchronous design 3) gave the smallest
area. For both test signals, the asynchronous filters
consume less energy than the synchronous filter.

For SS, the asynchronous filters require 4 to 6 times less
energy. For the signal ECG, the energy consumption is
divided by 23 to 43, due to the sparsity of the signal well
suited to non-uniform sampling. For the 40 nm
technelogy, the energy consumption benefit is improved
by 20%. Indeed, the 40 nm library standard cells include
Muller gates — which simplify the asynchronous control
part. The manual asynchronous filter consumes 23% to
35% less energy than the filter generated from the
proposed high-level svnthesis method.

In the following sections, we propose a new architecture
to implement the FIR filter datapath that can be used in
level-crossing or non-uniform sampling case.

I- New optimized FIR implementation

Another track (o investigate in the quest of reducing the
power consumption is to work at the data processing and
computing blocs, In fact, lower consumption can be
achieved using the less activity demanding architecture.
Using the LCSS allows us to reduce the power
consumption at the system level getting rid of the need
for a precise ADC with a digital output represented on a
large number of bits. We can even use a set of simple
comparators instead. At the FIR filter level, the LCSS
enables us to reduce the datapath width and thus the
activity of the computation blocs.

A

Reset all registers
Shift new xj

——,

Accumulate hi
Increment i

Accumnulate xj*sum{hi}
reset hi accumulator

output yk

Fig.2 : Proposed FIR computation ulgorithm.

For the FIR filter, we propose an optimized architecture
making benefit of the LCSS and modifying the data
processing execution by invoking the multiplication once
in a while. In this case, everything happens as if we had
the same sample value x¢ for a certain number of
theoretical sampling periods. So we can reduce the
number of multiplications. The equation for the FIR filter

becomes:
Yie = Z Xj . Z hy
J

i
Where x; is the current input sample to be multiplied by
the sum of h; values till the next level crossing takes
place. The computation algorithm is as follows (Fig.2):

At the end of computation we have the sum of all (i, j)
= N+1. Notice that in case the input signal stays for long
time (more than (N+1)/f,) without crossing a new level,
an output is to be generated and a new computation cycle
is initiated. The obtained architecture is presented in Fig,
3. The selection command is the current counter value 1.

The compare bloc generates a signal Next that indicates
the value change of the current treated input sample
selected at the delay line. The accumulated h; value has

to be multiplied by the current value (stored at the
register after the multiplexer). Then the h; accumulator
has to be reset to zero to compute the new sum of by
corresponding to the next x; value.

Xk.l. 4 {elx (5 bits)

;i | ROM (3278bits
i |
- | Selh (5 hits)
Dilay tine 17 (4t Aisters] sy h K=
I 4
! l N
I T o
I
\
Re Eilt‘r

Regisier

Adder

Regsler

Y, ¥
W
Fig.3: Optimized FIR filter architecture.

Here we took the same features of previous non-uniform
sampling implementations in terms of the number of
levels (16). The h; accumulator has to be 13-bit wide to
cover the worst case corresponding to the accumulation
of all stored 32 values of h. The final accumulator must
have 17 bits to cover all the possible values.

We developed the VHDL code for the datapath and the
control part implemented an FSM. This architecture is
robust and provides correct functioning even if the signal
crosses a neighboring level each sampling period.

All the registers receive the system clock which is at
least 32 times faster than the sampling frequency. We
opted for using the enabled-clock registers rather than
the gated-clock; in order to guarantee the code portability
when targeting an FPGA implementation in which
special clock distribution resources are foreseen to
provide the best performance.

IV- Performance comparison

After validating the design, the fully synchronous
synthesized version was compared with the previous
three FIR implementations, in both 350nm and 40nm
CMOS technologies.

The table of Fig. 4 summarized the measured values for
the new version compared with the previous three
implementations for the two target technologies. The
measurements were done for the cases of a sum of sines
(SS) and an ECG input signals. We clearly see that the
optimized architecture implementation occupies the
smallest area of all cases with a reduction of 33%
compared to the typical synchrenous version. As for the
required energy, we notice that the optimized
synchronous version is situated between the synchronous
and asynchronous versions. It allows up to 52%

reduction compared with the typical synchronous
implementation.

Energy Cunsumption (4 juule:
Aren () for gy bunsumption us luwies)

Y FIR Technology 350 nm 40 nm
Implementation Technology Technology
350 nm 40 nin 58 ECG ss ECG
1| Syachrunous 171000 | 2070 | 9472 | 9472 | 0653 | 0.53
2 Manual 161000 | 1900 189 | 2812 | 0099 | 0015
Ascynchronous
Automatic) N . -
3| s ey | w30 | 2844 | o407 | oass | w23
4 Optimized 114000 | 1560 | 5296 | 4621 | 0.511 | 0404

Synchronous

Fig.4 : Different FIR filter implementation resulis.

The asynchronous versions figures indicate that it would
be interesting to desynchronize the current optimized
architecture 1o virtually reach the lowest power
consumption,

Fig 5 : Quiput signals for the FIR filter implementations.

As far as the quality of filtering is concerned, Fig. 5
shows the output signals corresponding to the studied
input SS and ECG signals. The presented optimized
synchronous implementation seems to give the best
performance.

Conclusions

We have shown in this paper the importance of well
choosing the data processing blocs in the datapath to
reduce the overall power consumption, which is
especially important for the battery-operated embedded
systems and [oT applications. Optimization efforts to
reduce the required computation activity using the FIR
filter were presented as a demonstration example. The
new optimized implementation of the FIR filter was
compared with other synchronous and asynchronous FIR
filter versions developed at TIMA laboratory. The
obtained FIR architecture exhibits around 33% area 52%
power consumption reduction compared to the best
previous synchronous implementation. Further power
consumption improvement is expected be obtained via
desynchronizing the proposed optimized FIR filter
architecture.

References

[1] E. Allier. G. Sicard, L. Fesquet, and M. Renaudin,
“Asynchronous level crossing analog to digital converters,”
Measurement, vol. 37, no. 4, pp. 296 — 309, 2005, 8th
Workshop on ADC Modelling and Testing.

[2] F. Akopyan, R. Manohar, and A. B. Apsel, “A level-
crossing flash asynchronous analog-to-digital converter,” in

|2th 1EEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2006, pp. | | pp.—22.

[3] R. L. Grimaldi, 8. Rodriguez, and A. Rusu, "A 10-bit SkHz
level-crossing ADC,” in 20th European Conterence on Circut
Theory and Design (ECCTD), 2011, pp. 564-567.

[4] P. Martinez-Nuevo, S. Patil, and Y. Tsividis, “Derivative
level-crossing sampling,” IEEE Transactions on Circuits and
Systems [1: Express Briefs, vol. 62, no. {, pp. 11-15,2015.

[5] B. Bidégaray-Fesquet and L. Fesquet, “Levels, peaks,
slopes. . . which sampling for which purpose?” in 2™
International Conference on Event-based Controi,
Communication, and Signal Processing (EBCCSP), 2016.

[6]J. Mark and T. Todd, "A nonuniform sampling approach to
data compression,” [EEE Transactions on Communications,
vol. 29, no. |, pp. 24-32, 1981.

[7] K.-L. Chang, J. Chang, B.-H. Gwee, and K.-S. Chong,
“Synchronous logic and asynchronous-logic 8051
microcontreller ceres for realizing the Internet of Things: A
comparative study on dynamic voltage scaling and variation
effects,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 3, no. 1, pp. 23-34,2013.

[8] N. Paver, P. Day, C. Farnsworth, D. Jackson, W. Lien, and
J. Liu, "A low-power, low noise, configurable self-timed DSP,”
in 4th International Symposium on Advanced Rescarch in
Asynchronous Circuits and Systems, 1998, pp. 3242,

[¥] K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F.
Schalij, and A. Peeters, “Asynchronous circuits for low power:
a DCC error corrector,” Design Test of Computers, [EEE, vol.
11, no. 2, pp. 22-32, 1994,

[10] A. Skaf and A. Guyot: “VLSI Design of On-line
Add/Multiply Algorithms™ [nternational Conference on
Coumputer Design (ICCD 93), Cambridge, USA, October 1993,
[11] A, Skaf and A. Guyot: "SAGA: the First On-line
Arithmetic Coprocessor”™ - VLSI 95- New Delhi- January 1995,
[12] A. Prost-Boucle, O. Muller, and F. Rousseau, “Fast and
standalone design space exploration for high-level synthesis
under resource constraints,” Journal of Systems Architecture,
vol. 60, no. I, pp. 79-93, 2014.

[13] S. Nielsen, J. Sparso, . Jensen, and J. Nielsen, “A
behavioral synthesis frontend to the Haste/TiDE design flow,”
in 15th IEEE Symposium on Asynchronous Cireuits and
Systems (ASYNC). 2009, pp. 185-194.

[14] A. Bardsley, “Balsa: An asynchronous circuit synthesis
systermn,” Master’s thesis, University of Manchester, 1998,

[15] A. Prost-Boucle, "AUGH: Autoncmous and user guided
high-level synthesis,” Software,

hitp://tima.imag. fi/sls/research-projects/augh/.

[16] J. Simatic, A. Cherkaoui, R. P. Bastos, and L. Fesquet,
“New asynchronous protocols for enhancing area and
throughput in bundled data pipelines,” in 2%th Symposium on
Integrated Circuits and Systems Design (SBCCI), Aug 2016.
[17] J. Simatic, P. Alexandre, A. Cherkaoui, R. P. Bastos, and
L. Fesquet “A High-Level Synthesis Tool for Designing Ultra-
Low Power Asynchronous Systems” Submitted to 1EEE
Transactions on Computer Design Conference - 2016

[18] J. Cortadella. A, Kondratyev. L. Lavagno, and C. Sotirion,
“Desynchronization: Synthesis of asynchronous circuits from
synchronous specifications,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no.
10, pp. 1904-1921, Oct 2006.

[19] F. Acschlimann, E. Allier, L. Fesquet, and M. Renaudin,
“Asynchronous FIR filters: towards a new digital processing
chain,” in 10th [EEE International Symposium on
Asynchronous Cireuits and Systems (ASYNC), April 2004, pp.
198-200.

[20] L. Fesquet and B. Bidégaray-Fesquet, “"SPASS 2.0: Signal
processing for asynchronous systems,” Soltware,
hup://Njk.imag. fr/membres/Brigitte. Bidegaray/SPASS/
[accessed 2014-01-28], May 2010

