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Satellite Communications

Lecture (3)

Chapter 2.1
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[bject orbiimg another bod] how satefits maneuver In space and the determination of
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To achieve a stable orbit around the earth, a spacecraft must first be beyond the bulk
of the earth’s atmosphere, i.c., in what is popularly called space. There are many defini-
tions of space. U.S. astronauts are awarded their “space wings” if they fly at an altitude
that exceeds 50 miles (~80 km); some international treaties hold that the space frontier
above a given country begins at a height of 100 miles (~160 km).

To appreciate e basic laws that govern oelstial mechanics, we will be-
gin first with thefundamental Newtonien equations hat descrtbe the moiion of @ boay)
We will then give some coordinate axes within whigh the orbit of the satellie can be s¢
and determine the various forces on the earth safellte

Gravitational Force

—

« Newton’s 2nd Law: F =M-a

Gmm, _
* Newton’s Law Of Universal Gravitation Fb o = 12 2 . .
(assuming point masses or spheres): oay r
- Gm, g
* Putting these together: — = .
e ’ abody 2 r 2 21
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2.1 ORBITAL MECHANICS

Developing the Equations of the Orbit

Newton’s laws of motion can be encapsulated into four equations:

s = ut + (3)ar’ (2.1a)
v’ = 1?4 2at (2.1b)
v=u-+ at (2.1¢)

@.14)

where s is the distance traveled from time # = 0: u is the initial velocity cf the object at
time # = 0 and v the final velocity of the object at time 7; a is the acceleration of the ob-
Jject; P is the force acting on the object; and m is the mass of the object. Note that the ac-
celeration can be positive or negative, depending on the direction it is acting with resp

to the velocity vector. OFf these four equations, it is the last one that helps us understand |

the motion of a satellite in a stable orbit kneglecting any drag or other perturbing forces).

Put into words, Eq. (2.1d) states that the force acting on a bodv is equal to the mass of
the body multiplied by the resulting acceleration of the body.

the lighter the mass of the body, the higher the acceleration

Kinematics & Newton’s Law

s= Distance traveled in time, ¢
u = Initial Velocity at =0

v=Final Velocity at time = ¢

a= Acceleration ° Ss=ut+ (J/Z)é?l‘z
F=Force acting on the object
. V2 = (F + 2at
Newton’s

Second Law| |e v=u-+at

. F=ma
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there are two main forces acting on a satellite:

| . a centrifugal force |
the kinetic energy of the satellite, which attempts to fling the satellite into a higher orbit

| a centripetal force |

due to the gravitational attraction of the planet about which the
satellite is orbiting, which attempts to pull the satellite down toward the planet.

If these two forces are equal, the satellite will remain in a stable orbit.

Force = mass X acceleration and the unit of force is a Newton, with the not
N. A Newton is the force required to accelerate a mass of 1 kg with an acceleratio
1 n/s”. The underlying units of a Newton are therefore (kg) X m/s®. In Imperial U
one Newton = 0.2248 ft Ib. The standard acceleration due to gravity at the earth’s
face is 9.80665 X 10 km/s”, which is often quoted as 981 cm/s%. This value decr

FORCE ONASATELLITE:1

» Force = Mass x Acceleration

« Unit of Force is a (Mewton)

e A Newtonis the force required to accelerate 1 kg by 1 m/s?
« Underlying units of a NMewton are therefore (kg) x (m/s?)

e InImperial Units 1 Newton = 0.2248 ft Ib.

ACCELERATION FORMULA

 a = acceleration due to gravity = u / 7 km/s?
» r=radius from center of earth
» u=universal gravitational constant
G multiplied by the mass of the earth M
« uis Kepler’s constant and = 3.9861352 x 10° km?/s2

* G=6.672 x 1011 Nm?/kg? or 6.672 x 10-20 km3/kg s in the
older units
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The satellite has a mass, m,
and is traveling with velocity,
v, in the plane of the orbit

FIGURE 2.1 Forces acting on a satellite in a stable orbit around the earth (from Fig. 3.4 of
reference 1). Gravitational force is inversely proportional to the square of the distance betwes
the centers of gravity of the satellite and the planet the satellite is orbiting, in this case the
earth. The gravitational force inward (F., the centripetal force) is directaed toward the center c
gravity of the earth. The kinetic energy of the satsllite (F- -, the centrifugal force) is directed
diametrically opposite to the gravitational force. Kinetic energy is proportional 1o the soiizre g
the velocity of the satellite. When these inward and outward forces are balanced, the satellizs
moves around the earth in a “free fall” trajectory: the satellite’s orbit. For a description of the

units, please see the text.

The acceleration (&) due to gravity at a distance rfrom the earth is a= )u,/pﬁ km/s?

4 is the product of the universal gravitational constant G and the mass of the earth A/}
this is kepler’s constant and has the value u = 3986004418 x 10° km’/kg .

The universal gravitational constant is G = 6.672 x10-t Nm2/kg? = G = 6.672 x10-20
(km?3/kg s?) in the older units.

Force=mass x acceleration Fry =m X (u/r?)
Centripetal force acting on satellite, F, =m X (GMy/r?)
The centrifugal acceleration, a=vr
The centrifugal force, Four =m X (v¥/r)

If the force on the satellite are balanced

The velocity vof a satellite in a circular orbit is, v = (u/r)?
The period of satellite’s orbit, 7
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u me oroit 1s circular, the distance traveled by a satellite in one orbit around a plam_et is
2arr, where 1 is the radius of the orbit from the satellite to the center of the planet. Since
distance divided by velecity equals time to travel that distance, the period of the satellite’s

orbit, T, will be

T=Q2urjv = (Zﬂ'?’)/[(ﬂ,/f)!/z]

T= (Q#rqu)/(#m)

(2.6)

TABLE 2.1 Orbital Velocity, Height, and Period

of Four Satellite Systems

Orbital height

Orhital velocity  Orbital period

Satellite system {km) { ke /s) {h min sL
;;;:sat {GEQ) 35,786.03 3.0747 23 56 4.7
New-CO {MEQ) 10,255 1.8984 5 B5 48.4
Skyhricge (LEC) 1,489 7.1272 55 ‘I'i'.i
Iridium {LEQ} 780 7.4824 1 40 27.

Mean earth radius is 6378.137 km and GEC radius from the center of the

earth is 42,764.17 km,

a geocentric coordinate system.

Z

Earth rotation

Equatorial plane

Satellite

FIGURE 2.2 The initial coordinate
system that could be used to de-
scribe the relationship between the
earth and a satellite. A Cartesian
coordinate systemn with the geo-
graphical axes of the earth as the
principal axes is the simplest coor-
dinate system to set up. The rota-
tional axis of the earth is about the
axis ¢z, where c is the center of the
earth and ¢z passes through the
geographic north pols. Axes cx, cy,
and ¢z are mutually orthogonal
axes, with cx and cy passing
through the earth’s geographic
equator. The vector r locates the
moving satellite with respect to the
center of the earth.
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the satellitc mass m 1ocated at a vector distance » from the center of the earth.

the gravitational force F on the satellite is given by

_ GMgmr
F = —-—T
Is
[Me is the mass of the carth and G = 6.672 x 10-"! Nm/ke?,
o w5 _ da*r
But force = mass > acceleration F = mE—z
t
d _a'zr Which yield
-y = ich yields
r dt®
d°r " r
— —u =0
a7 }_3.LL (2.10)

This is a second-order linear differcntial equation and its solution will involve sjx
undetermined constants called the orbital elements. The orbit described by these orbital
elements can be shown to lie in a plane and to have a constant angular momentum. The
S})lut'ion to Eq. (2.10) is difficult since the second derivative of 7 involves the second de-
rivative of the unit vector r. To remove this dependence, a different set of coordinates can

be chosen to describe the location of the satellite such that the unit vectors in the three
axes are constant. This coordinate system uses the plane of the satellite’s orbit as the ref-
erence plane. This is shown in Figure 2.3.

Zo

v FIGURE 2.3 The orbital plane coor-

dinate system. In this coordinate sys-
tem, the orbital plane of the satellite
is used as the reference plane. The
orthogonal axes x; and y, lie in the

Yo _ orhital plane. The third axis, z, is
perpendicular to the orbital plane.
The geographical z-axis of the earth
(which passes through the true North
Pale and the center of the earth, ¢
does not lie in the same direction as
the z axis except for satellite orbits
that are exactly in the plane of the
geographical equator.
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d* d- XoXy + Yob
,\( xo)"’f’o( )’D)_'_,U-( oXo YD)’G)=0

o\ g dr )" (R

a Cartesian coordinate system. The polar coordinate system is shown in Figure 2.4,

¥a

FIGURE 2.4 Polar coordinate systam in the plane
of the satellite’s orbit. The plane of the orbit coin-
cides with the plane of the paper. The axis 2 is
straight out of the paper from the canter of the
earth, and is normal to the plane of the sateliita’s
orbit. The satellite’s position is described in terms
of the radius from the center of tha sarth r, and the
Iy angle this radius makes with the x, axis, ¢

Xo = rgcos by
Yo = rpsindy
= FPcosqbn — dysiney,
Yo = @y cosdg + 7 sing,
and equating the vector components of r; and &y in turn in Eq, (2.11) yields

dr, dy\|  p
—2 el )=
dt dt g

Expressing Eq. (2.10) in terms of the new coordinate axes x,, Yo, and z; gives

(2.11)

Equation (2.11) is easier to solve if it is expressed in a polar coordinate system rather than

With the polar coordinate system shown in Figure 2.4 and using the transformations

(2.12a)
(2.12b)
(2.12¢)
(2.12d)

(2.13)

and

d gy dr, d¢0 _
A dﬁ)”(zr_)(?)_o

of the satellite’s orbit, ro, namely v

- P
* 1+ ecos(dy — )

given by

p= )

of the orbit is an ellipse is Kepler's first law of planetary motion,

Where 6 is a constant and ¢ is the eccentricity of an ellipse whose semilatus

(2.14)

Using standard mathematical procedureswe can develop an equation for the radius

(2.15)

rectum p is

(2.16)

and / is the magnitude bf the orbital angular momentum of the satellite. That the equation
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Kepler’s Three Laws

First Law: The orbit of each planet is an ellipse, with
the Sun at a focus (1609).

Second Law: The line joining the planet to the Sun
sweeps out equal areas in equal times (1609).

Third Law: The square of the period of a planet is
proportional to the cube of its mean distance from
the Sun (1619).

PHYSICAL LAWS

Kepler’s 1st Law: Law of Ellipses

%

The orbits of the planets are ellipses with
the sun at one focus




08/03/1430

10

PHYSICAL LAWS

Kepler’s 2nd Law: Law of Equal Areas
The line joining the planet to the center of the sun

sweeps out equal areas in equal times

T5 4 13

T2

T6

PHYSICAL LAWS

Kepler’s 2nd Law: Law of Equal Areas

ti-to = tz-t2
Area 1l = Area 2
Satellite travels at varying speeds
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PHYSICAL LAWS

Kepler’s 3rd Law: Law of H
The squares of the periods of

two planets’ orbits are
proportional to each other as
the cubes of their semi-
major axes:
T12/T22 = ai3/az?

In English:

Orbits with the same semi-
major axis will have the
same period

Kepler's Three Laws of Planetary Motion

Johannes Kepler (1571-1630) was a German astronomer and scientist who developed his
three laws of planetary motion by careful observations of the behavior of the planets in
the solar system over many years, with help [rom some detailed planctary observations
by the Hungarian astronomer Tycho Brahe. Kepler's three laws are

1. The orbit of any smaller body about a larger body is always an ellipse, with the cen-
ter of mass of the larger body as one of the two foci

2. The orbit of the smaller body sweeps out equal areas in equal time (see Figure 2.5).

3. The square of the period of revolution of the smaller body about the larger body
equals a constant multiplied by the third power of the semimajor axis of the orbital
cllipse. That is, 7% = (4m2a”)/u where T is the orbital period, a is the semimajor
axis of the orbital ellipse, and p is Kepler’s constant. If the orbit is circular, then a
becomes distance r, defined as before, and we have Eq. (2.6).

Describing the orbit of a satellite enables us to develop Kepler's second two laws.
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FIGURE 2.5 ||Ilustr§tion of Kepler's second law of planetary motion‘lA satellite is in orbit
about the planet earth, E. The orbit is an ellipse with a relatively high eccentricity, that is,
it is far from being circular. The figure shows two shaded portions of the elliptical plane in
which the orhit moves, one is close to the carth and encloses the perigee while the other
is far from the earth and encloses the apogee. The perigee is the point of closest ap-
proach to the earth while the apogee is the point in the orbit that is furthest from the
earth. While close to perigee, the satellite moves in the orbit between times £ and £ and
sweeps out an area denoted by A;. While close to apoges, the satellite moves in the orbit
between times t; and t, and sweeps out an area denoted by Ay If &, — &, = £ — ¢, then
Arp = Ag,.

Describing the Orbit of a Satellite

The quantity 8, in Eq. (2.15) serves to orient the ellipse with respect to the orbital planc
axes x, and y). Now that we know that the orbil is an ellipse, we can always choose x;
and y, so that 6, is zero. We will assume that this has been done for the rest of this
discussion. This now gives the equation of the orbit as

— p
I + ecos gy

o (2.17)

The path of the satellite in the orbital plane is shown in Figure 2.6. The lengths a and b
of the semimajor and semiminor axes are given by

a=p/(1-¢&) (2.18)
b=a(l-e)" (2.19)

The pomnt 1n the orbit where the satellite is closest to the earth is called the perigee
and the point where the satellite is farthest from the earth is called the apogee. The perigee
and apogee are always exactly opposite each other. To make fy equal to zero, we have
chosen the x; axis so that both the apogee and the perigee lie along it and the x, axis is
therefore the major axis of the ellipse.
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The differential area swept out by the vector ry from the origin to the satellite in
time dt is given by

d
dA = O.Sr(z,(j,io)dt = 0.5hds (2.20)

Remembering that h is the magnitude of the orbital angular momentum of the satellite,
the radius vector of the satellite can be seen to sweep out equal areas in equal times. This
is Kepler’s second law of planetary motion. By equating the area of the ellipse (mab) to

the area swept out in one orbital revolution, we can derive an expression for the orbital
period T as

T = (4% (2.21)

I = (47 )/ T= (2mr )

This equation is the mathematical expression of Kepler's third law of planctary mo-
tion: the square of the period of revolution is proportional to the cube of the semimajor
axis. (Note that this is the square of Eq. (2.6) and that in Bq. (2.6) the orbit was assumed
to be circular such that semimajor axis ¢ = semiminor axis b = circular orbit rading
from the center of the earth r.) Kepler's third law extends the result from Eq. (2.6), which
was derived for a circular orbit, to the more general case of an elliptical orbit, Equa-

tion (2.21) is extremely important in satellite communications systems, This equation
determines the period of the orbit of any satellite, and it is used in every GPS receiver
in the calculation of the positions of GPS satellites. Equation (2.21) is also used to find
the orbital radius of a GEO satellite, for which the period T must be made exactly equal
to the period of onc revolution of the carth for the satellite to remain stationary over a
point on the equator,
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An important point to remember is that the period of revolution, T, is referenced to
inertial space, namely, to the galactic background.{The orbital period is the time the or-

biting body takes to return to the same reference point in space with respect to the galac-

tic background| Nearly always, the primary body will also be rotating and so the period

of revolution of the satellite may be different from that perceived by an observer who is
standing still on the surface of the primary body. This is most obvious with a geostation-
ary carth orbit (GEO) satellite (see Table 2.1). The orbital period of a GEO satellite is ex-
actly equal to the period of rotation of the earth, 23 h 56 min 4.1 s, but, to an observer

on the ground, the satellite appears to have an infinite orbital period: it always stays in
the same place in the sky.

@tationary Vs, geosynchmnou@

To be perfectly geostationary, the orbit of a satellite needs to have three features:
[(a)]it must be exactly circular (i.e., have an eccentricity of zero);[(b)]it must be at the
correct altitude (i.e., have the correct period); and[(c)]it must be in the plane of the equa-
tor (i.e.. have a zero inclination with respect to the equator)] If the inclination of the
satellite is not zero and/or if the eccentricity is not zero, but the orbital period is cor
rect, then the satellite will be in a geosynchronous orbit] The position of a geosynchro-
nous satellite will appear to oscillate about a mean look angle in the sky with respect
to a stationary observer on the earth’s surface. The orbital period of a GEO satellite,
23 1 56 min 4.1 s, is one sidereal day] A sidereal daylis the time between consecutive
crossings of any particular longitude on the earth by any star, other than the sun|. The|
[mean solar day|of 24 h is the time between any consecutive crossings of any particular
longitude by the sun, and is the time between successive sunrises (or sunsets) observed
at one location on earth, averaged over an entire year. Because the earth moves round
the sun once per 365 Y days, the solar day is 1440/365.25 = 3.94 min longer than a
sidereal day.
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Solar vs. Sidereal Day

» A sidereal day is the time between consecutive crossings of any
particular longitude on the earth by any star other than the sun.

» A solar sayis the time between consecutive crossings of any
particular longitude of the earth by the sun-earth axis.

— Solar day = EXACTLY 24 hrs
— Sidereal day =23 h 56 min. 4.091s
* Why the difference?

— By the time the Earth completes a full rotation with respect to an
external point (not the sun), it has already moved its center
position with respect to the sun. The extra time it takes to cross
the sun-earth axis, averaged over 4 full years (because every 4
years one has 366 deays) is of about 3.93 minutes per day.

Calculation next page

15
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LOCATING THE SATELLITE
IN ORBIT: 1

Start with Fig. 2.6 in Text 0, is the True

’1& Anomaly
| % See eq. (2.22)
b y o :

Cis the
center of the
orbit ellipse

Ois the
: i center of the
g a1 earth

Perigee

Apogee

NOTE: Perigee and Apogee are on opposite sides of the orbit

31

Vo

Perigee

Apogee —

Xo

|
|
|
1
1
1
|
1
1
1
1
1
1
]
1

r¢44444~___—~4447a(1 + &)
I

FIGURE 2.6 The orbit as it appears in the orbital plane. The point Q is the center of
the earth and the point C is the center of the ellipse. The two centers do not coincide
unless the eccentricity, e, of the ellipse is zero (i.e., the ellipse becomes a circle and

a = b|. The dimensions are the semimajor and semiminor_axes) of the orbital

ellipse, respectively.
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Locating the Satellite in the Orbit

Consider now the problem of locating the satellite in its orbit. The equation of the orbit
may be rewritten by combining Egs. (2.15) and (2.18) to obtain

_dl-¢)
T 1+ ecosd,

Bf Figure 2.6) is measured from the x; axis and is called the true anom-
aly.

Anomaly was a measure used by astronomers to mean a planet’s angular distance
from its perihelion (closest approach to the sun), measured as if viewed from the sun. The
term was adopted in celestial mechanics for all orbiting bodies.] Since we defined the pos-
itive x; axis so that it passes through the perigee, ¢, measures the angle from the perigee
1o the instantaneous position of the satellite. The rectangular coordinates of the satellite
are given by

(222)

Fo

Xy = Ty cos gy (2.23)
Vg = Ty Sin iy (2.24)

As noted earlier, the orbital period T is the time for the satellite to complete a rev-
olution in inertial space, traveling a total of 27 radians. The average angular velocity 7
15 thus

n = Q2m)T = (W )" (2.25)

If the orbat 15 an ellipse, the instantaneous angular velocity will vary with the position of
the satellite around the orbit. If we enclose the elliptical orbit with a circumscribed cir-
cle of radius a (see Figure 2.7), then an object going around the circumscribed circle with
a constant angular velocity n would complete one revolution in exactly the same period
T as the satellile requires to complete one (elliptical) orbital revolution.

Consider the geometry of the circumscribed circle as shown in Figure 2.7, Locate
the point (indicated as A) where a vertical line drawn through the position of the satellite
intersects the circumscribed circle. A line from the center of the ellipse (C) to this point
(A) makes an angle E with the x; axis; |E i1s called the eccentric anomaly bf the satellite.
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Yo axis

Circumscribed Circle

FIGURE 2.7 The circumscribed circle and the eccentric anomaly E. Point O is the canter of]
the earth and point C is both the center of the orbital ellipse and the center of the circum-
scribed circle. The satellite location in the orbital plane coordinate system is specified by (x;
¥o). & vertical line through the satellite intersects the circumscribed circle at point A. The
sccentric anomaly E is the angle from the x, axis to the line joining C and A,

It is related to the radius r, by

ry = a(l — ecosE) (2.26)
Thus
a—ry=aecoskE (2.27)

We can also develop an expression that relates eccentric anomaly £ to the average
angular velocity ), which yields

ndt = (1 — ecosE)dE (2.28)

Let[r, be the fime of perigee] This is simultaneously the time of closest approach to the
garth; the time when the satellite is crossing the x, axis; and the time when £ is zero, If
we integrate both sides of Eq. (2.28), we obtain

0t — 1) = E - esinE (2.29)

The left side of Eq. (2.29] is called the mean anomaly, M. Thug
M=nx(t—1t)=E— esinE (2.30)

The mean anomaly M is the arc length (in radians) that the satellite would have traversed
since the perigee passage if it were moving on the circumscribed circle at the mean an-
gular velocity 7.

If we know the time of perigee, f,, the ecceniricity, e, and the length of the semi-
major axis, a, we now have the necessary equations to determine the coordinates (7, ¢)
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Jocating the satellite at the point (xo, Yo, Zo)

and| (x;, ;) of the satellite in the orbital plane,| The process is as follows

1. Calculate  using Eg. (2.25). 7 = @a)/T = (w')/a”)
2. Calculate M using Eq. (2.30).
3. Solve Eq. (2.30) for E.

d. Find r, from E using Eq. (2.27). @ — ro = aecosE

_all - &)
5. Solve Eq. (2.22) for ¢, T T ¥ ecosdy

6. Use Eqgs. (2.23) and (2.24) to calculate x, and y,

M=mn{t—t)=E— esinE

. Xg = rycos ¢y
Yo = Ty sin ¢y

Now we must locate the orbital plane with respect to the earth.

Locating the Satellite with Respect
to the Earth

At the end of the last section, we summarized the process for locating the satellite at
the point (x;, ¥y, 2g) in the rectangular coordinate system of the orbital plane. The lo-
cation was with respect to the center of the earth. In most cases, we need to know
where the satellite is from an observation point that is not at the center of the earth.
We will therefore develop the transformations that permit the satellite to be located
from a point on the rotating surface of the earth. We will begin with
[forial coordmate system hs shown in Figure 2.8. The rotational axis of the earth is the
z; axis, which is through the geographic North Pole. The x; axis is from the center of
the earth toward a fixed location in space called the first point of Aries (see Figure 2.8).
This coordinate system moves through space; it translates as the earth moves in its or-
bit around the sun, but it does not rotate as the earth rotates. The x; direction is always
the same, whatever the earth’s position around the sun and is in the direction of the
first point of Aries[The (x, y;J plane|contains the earth’s equator and is called the

: qut’!fﬁﬂﬂ plane
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Locating the Satellite with Respect
to the Earth

Zy

FIGURE 2.8 The geocentric
equatorial system. This geocentric
system differs from that shown in
Figure 2.1 only in that the x axis
points to the first point of Aries.
The first point of Aries is the di-
rection of a line from the center
of the earth through the center of
the sun at the vernal equinox
(about March 21 in the Northarn
Hemisphere), the instant when
the subsolar point crosses the
equator from south to north. In
the above systermn, an object may
he located by its right ascension
RA and its declination 3.

Angular distance measured eastward in the equatorial plane from the x; axis is

called right ascension]and given IhThc two points at which the orbit

penetrates the equatarial plane ate called nodes] the satellite moves upward through
the equatorial plane af the ascending node) and downward through the equatorial
plane at [he descending node| given the conventional picture of the earth, with north
al the top, which is in the disection of the positive z axis for the carth centered coor-
dinate set, Remember that in space there is no up or down; that is a concept we are
familiar with because of gravity at the earth's surface, For a weightless body in space,
such as an orbiting spacectaft, up and down have no meaning untess they are defined
with respect to a reference point[The right ascension of the ascending node]is called

 Dthe wngle that the orbital plane makes with the equatorial plane (the planes inter-
sect at the line ioining the nodes) Is called thd inclingtion, 1 JFigure 2.9 1Mustrates these
quaritiics.
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F 4

/Qﬂ ——TTAscgnding node
[
L

X .

FIGURE 2.9 Lceating the orhit in the geocentric equatorial system. Tre satellite penetrates
the aquatorial plane twhile moving in the positiva z direction) at the ascending node. The
right ascension of the ascending node is { and the inslination jis the angle petween the
aquaterial plane and the orbital plane. Angle w, measuced in the orbital plane, lpcates the

parigee with ragpect 1o the equatorial plane.

[ The variables (1 and i|togethes locate the orbital plane with respect (0 the equato-
rial plane. To locate the orbital coordinate system with respect to the equatonial coordi-
nafe gystem we need|w, the argument of perigee west.|This is the angle measured along
the orbit from the ascending node to the perigee.

Standard time for space operations and most other scientific and engineering pur-
pases 1§ universal rime (UT) also known as| zufu time (z}] This is essentially the mean
solar time at the Greenwich Observatory near London, il land, Universal time 1s meas-
ured in hours, minutes. and seconds of in fractions of a day. It is 5 h later than Eastern
Standard Time. so that 07:00 BEST is 12:00:00 h UT. The civil or calendar day begins
at 00:00:00 hours UT, frequently written as O h. This is, of course, midnight (24:00:00)
on the previous day. Astronomers employ a second dating system involving[Julian dayy
Iulian days start at noon UT in a counting system whereby noon on
December 31, 1899, was the beginning of Julian day 2415020, usually written 241 5020,
These are extensively tabulated in reference 2 and additional information is in reference
14. As an example, noon on December 31, 2000, the eve of the twenty-first century, is
the start of Julian day 245 1909. Julian dates can be used to indicate time by append-
ing a decimal fraction; 00:00:00 h UT on January 1, 2001—=zero hour, minute, and

sccona Jor the third millenium A.D—is given by Julian date 245 1909.5. To find the
exact position of an orbiting satellite at a given instant in time requires knowledge of
the orbital elements. -
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QOrbital Elements

To specify the absolute (i.e, the inertial) coordinates of a satelhite af Gme 1, we need to
know six quantities. (This was evident earlier whesi we determined that a satellite’s equa-
ton of motion was a second order vector inear differential equation.) These quandtics
ate calleq the orbital elements, More than six quantities can be used to describe a unique
orbital path and there is some arbitrariness in exactly which six quantities are used, We
have chosen to adopt @ sgt thal is commonly used in satellte communications: eeentric-

ity {¢), semimajor axis (), time of perigee {(), right ascension of ascending node (€D,

inclination (7), and arzument of perigee (w). Frequendy, the mean anomaly (M) at 2 given
fime s substifuted for 7,

EXAMPLE 2.1.1 Geostationary Satellite Orbit Radius

The cauth rotates once per sidereal day of 23 h 36 min 4.09 5. Use Eq. (2.21) to show that the radiw
of the GEO is 42,164.17 km as given in Table 2.1.

Answer Equation (2.21) gives the square of the osbital period in seconds
I* = (40 )/

Rearranging the equation, the orbital radivs « is given by
@ = Tpfer’)

For one sidereal day, T = 86,164.09 5. Hence

I

a_‘

(86,164.1)7 X 3.986004418 X 10°/(477) = 7.406020251 10" k'
¢ = 42,164.17 kin

This is the orbital radius for a geostationary satellite, as given in Table 2.1, ) . II
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EXAMPLE 2.1.2 Low Earth Orbit

The Space Shuttle is an example of a low earth orbit satellite. Sometimes, it orbits at an altitude of
250 km above the earth’s surface, where there is still a finite number of molecules from the at-
mosphere. The mean earth’s radius is approximately 6378.14 km. Using these figures, calculate the
period of the shuttle orbit when the altitude is 250 km and the orbit is circular. Find also the linear
velocity of the shuttle along its orbit

Answer The radius of the 250-km aliitude Space Shuttle orbit is (r, + /1) = 6378.14 + 250.0 —
6628.14 km

From Eq. 2.21, the period of the orbit is T where

T = (dma’)/u = 472 X (6628.14)%/3.986004418 % 10° 52
= 2.88401145 x 107 52

Hence the period of the orbit is
T = 5370.30 s = 89 min 30.3 s.

This orbit period is about as small as possible. At a lower altitude, friction with the earth’s atmos-
phere will quickly slow the Shuttle down and it will return to earth. Thus, all spacecraft in stable
earth orbit have orbital periods exceeding 89 min 30 s.

The circumference of the orbit is 2ma = 41,645.83 km.
Hence the velocity of the Shuttle in orbit is

2ma/T = 41,645.83/5370.13 = 7.755 km/s

Alternatively, you could use Bq. (2.5): » = (p/r)"2 The term g = 3.986004418 % 10° kin’/s? and
the term r = (6378.14 + 250.0) km, yielding v = 7.755 km/s.
Note: If 4 and r had been quoted in units of m'fs” and m, respectively, the answer would have been
in meters/second. Be sure to keep the units the same during a calculation procedure.

A velocity of about 7.8 kmv/s is a typical velocity for a low earth orbit satellite. As the zlti-
tude of a satellite increases, its velocity becomes smaller. ]

EXAMPLE 2.1.3 Elliptical orbit

A satellite is in an elliptical orbit with a perigee of 1000 km znd an apogee of 4000 km. Using a
mean earth radius of 6378.14 km, find the period of the orbit in hours, minutes, and seconds, and
the eccentricity of the crbit. d

Answer The major axis of the elliptical orbit is a straight line between the apogee and perigee,
as seen in Figure 2.7. Hence, for a semimajor axis length a, carth radius r,, perigee height £, and
apogee height h,,

2a =2r, + h, + h, = 2 X 6378.14 = 1000.0 + 4000.0 = 17,756.28 km
"Thus the semimajor axis of the orbit has a length a = 8878.14 km. Using this value of @ in Eq.(2.21)
gives an orbital period T' seconds where
T? = (4w%a®)/p = 4or? X (R87R.14)%/3.986004418 X 10° s
= 6.930872802 X 10's*
T =8325.1804 5 = 138 min45.19s = 2h 18 min 45.19 5
The eccentricity of the orbit is given by e, which can be found from Eq. (2.27) by consider-

ing the instant at which the satellite is at perigee. Referring to Figure 2.7, when the satellite is at
perigee, the eccentric anomaly E = 0 and ry = r, + #,. From Eq. (2.27), at perigee

ry=a(l —ecosE) and cosE =1
Hence

ret+hy=a(l —€)
e=1—(r.+h)a=1-7378.14/8878.14 = 0.169 | |
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Ellipse

TABLE 1.1 Types of Conic Sections as a Function of Eccen-

tricity and Total Specific Energy
Total
Conic Section Eccentricity Specific Energy
2
Circle e=0 E='ﬁ¢'
2

Ellipse 0<e<1 ‘ia'<5<°
Parabola e=1 E=0
Hyperbola e>1 E>0

_— AV, - Boost
AV,-Cireularize

Line of Nodes
AVg3 - Plane

Change

Transfer -AV,
Ellipse

Fig. 5.2 Velocity increments needed to achieve GEO.
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Conic Sections

Orbit Geometry
a - I 2a
2p ’ __2[—
al an
-2 -"[/
N 1 >f”° 4(7—
4 . 2p
ZAN I
Par a Hyperbolo \
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» Book Lecture notes

LOCATING THE SATELLITE
IN ORBIT: 1
Start with Fig. 2.6 in Text ¢, is the True
_TT\ Anomaly
- See eq. (2.22)
LR TS
' 7 Ny, e Perigee Cis the
Apogee : — center of the
' orbit ellipse
Ois the
: _ center of the
! e L VRPN earth
NOTE: Perigee and Apogee are on opposite sides of the orbit o

26
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LOCATING THE SATELLITE
IN ORBIT: 2

* Need to develop a procedure that will allow the
average angular velocity to be used

* If the orbit is not circular, the procedure is to use a
Circumscribed Circle

* A circumscribed circle is a circle that has a radius
equal to the semi-major axis length of the ellipse
and also has the same center

See nextslide [T D>

LOCATING THE SATELLITE
IN ORBIT: 3
Fig. 2.7 in the text ¥ axis
| K:Average angular velocity
g = A
// — 7 I\ E = Eccentric Anomaly
— F=
[/ \ M=M A |
{{_/ \% ] —m M ean Anomaly
S yZ
\ ™~ /| M= arc length (in radians) that the
Orolt satellite would have traversed since
\ perigee passage if it were moving
":;;:r—n;m—m—j—a:; around the circumscribed circle
with a mean angular velocity

54
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See eq. (2.18)
and (2.16)

ORBIT CHARACTERISTICS
Semi-Axis Lengths of the Orbit
P h p = ﬁ
Y H

and A is the magnitude of
the angular momentum

/
b = a(l—e2 2Where e =

h?C
7

See eqn.
(2.19)

and eis the eccentricity of the orbit

55

ORBIT ECCENTRICITY

o If a=semi-major axis,
b= semi-minor axis, and

e = eccentricity of the orbit ellipse,

then
_a-b

e =
a+b

NOTE: For a circular orbit, a= band e=0

56
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Time reference:

* t, Time of Perigee = Time of closest
approach to the earth, at the same time, time
the satellite is crossing the x, axis,
according to the reference used.

* t-t, =time elapsed since satellite last
passed the perigee.

57

ORBIT DETERMINATION 1:
Procedure:

Given the time of perigee ¢, the eccentricity eand
the length of the semimajor axis a:

* n Average Angular Velocity (eqn. 2.25)
« M Mean Anomaly (egn. 2.30)

 E Eccentric Anomaly (solve eqgn. 2.30)
* 1, Radius from orbit center (egn. 2.27)

* ¢, True Anomaly (solve eq. 2.22)

* X, andy, (using eqn. 2.23 and 2.24)

58
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ORBIT DETERMINATION 2:

o Orbital Constants allow you to determine
coordinates (7,, ¢,)and (x,, ¥,)in the
orbital plane

» Now need to locate the orbital plane with
respect to the earth

» More specifically: need to locate the orbital
location with respect to a point on the
surface of the earth

59

LOCATING THE SATELLITE
WITH RESPECT TO THE EARTH

» The orbital constants define the orbit of the
satellite with respect to the CENTER of the earth

» To know where to look for the satellite in space,
we must relate the orbital plane and time of
perigee to the earth’s axis

NOTE: Need a 77me Referenceto locate the satellite. The
time reference most often used is the 77me of Perigee, t,

60
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GEOCENTRIC EQUATORIAL

COORDINATES -1

« z,axis Earth’s rotational axis (N-S poles

with N as positive z)

« X;axis Inequatorial plane towards FIRST

POINT OF ARIES
 y;axis Orthogonal to z; and Xx;

NOTE: The First Point of Ariesis a line from the
center of the earth through the center of the sun at
the vernal equinox (spring) in the northern
hemisphere

61

GEOCENTRIC EQUATORIAL

COORDINATES - 2

Fig. 2.8 in text

RA = Right Ascension
(in the x;,y; plane)

J = Declination (the
angle from the x;,y; plane
to the satellite radius)

To First Point of

NOTE: Direction {0’ First Point of Aries does NOT rotate
with earth’s motion around; the direction only translates
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LOCATING THE SATELLITE -1

- Find the Ascending Node

—Point where the satellite crosses the
equatorial plane from South to North

—DefineQ and i Inclination

Node (= RA from Fig. 2.6 in text)

—Defi I’;O)\ Right Ascension of the Ascending

See next slide >
63

DEFINING PARAMETERS

Fig. 2.9 in text
\%ﬁ\Saleﬂite
Center of earth jper-gee
Argument of Perige& / .
: : L” : Inclination
Right Ascension % of orbit
First Point Q TAscending node
of Aries = /'
Orbit passes through Equatorial plane

equatorial plane here

64
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DEFINING PARAMETERS 2

/'. Orbital plane

Parigee

(Source: M.Richaria, Satellite Communication Systems, Fig.2.9) .

LOCATING THE SATELLITE -2

» O and 1 together locate the Orbital
plane with respect to the Equatorial
plane.

* » locates the Orbital coordinate
system with respect to the
Equatorial coordinate system.

66
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LOCATING THE SATELLITE -2

 Astronomers use Julian Days or Julian Dates
» Space Operations are in Universal Time Constant

(UTC) taken from Greenwich Meridian (This time is
sometimes referred to as “Zulu™)

» To find exact position of an orbiting satellite at a given

instant, we need the Orbital Elements

67

ORBITAL ELEMENTS (P. 29)

* O Right Ascension of the Ascending Node
* | Inclination of the orbit

* ® Argument of Perigee (See Figures 2.6 &
2.7 in the text)

Time of Perigee
» e Eccentricity of the elliptical orbit

* a Semi-major axis of the orbit ellipse (See
Fig. 2.4 in the text)

68
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conclusions

Definition of terms for earth-orbiting

satellite.~—~
\

Apogee The point farthest from earth. Apogee I')

height is shown as /ain Fig
Perigee The point of closest approach to earth. The N
perigee height is shown as /p

Line of apsides The line joining the perigee and
apogee through the center of the earth.

Ascending node The point where the orbit crosses ;
the equatorial plane going from south to north. /
Descending node The point where the orbit /
crosses the equatorial plane going from north to
south.

Line of nodes The line joining the ascending and f
descending nodes through the center of the earth.
Inclination The angle between the orbital plane [

|
Sub-satellite JI
path

and the earth’s equatorial plane. It is measured at .

the ascending node from the equator to the orbit, : Lat.is

going from east to north. The inclination is shown \ /
as /in Fig. \

Mean anomaly M gives an average value of the

angular position of the satellite with reference to

the perigee. e

True anomaly is the angle from perigee to the —
satellite position, measured at the earth’s center. . . .
This gives the true angular position of the satellite ~ Figure 2.3 Apogee height /1,, perigee height /i, and
in the orbit as a function of time. inclination i. [, iz the line of apsides.
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Definition of terms for -~

. - /

earth-orbiting satellite . y.
Prograde orbit An orbit in which the satellite moves in the
same direction as the earth’s rotation. The inclination of a
prograde orbit always lies between 0 and 90°. Equater
Retrograde orbit An orbit in which the satellite moves in a
direction counter to the earth’s rotation. The inclination of a
retrograde orbit always lies between 90 and 180°. ,
Argument of perigee The angle from ascending node to / N
perigee, measured in the orbital plane at the earth’s center, in 3\
the direction of satellite motion. f > 7 \I
Right ascension of the ascending node To define 7 Weridians R /

completely the position of the orbit in space, the position of
the ascending node is specified. However, because the earth
spins, while the orbital plane remains stationary the longitude
of the ascending node is not fixed, and it cannot be used as an Equatarial
absolute reference. For the practical determination of an orbit,
the longitude and time of crossing of the ascending node are
frequently used. However, for an absolute measurement, a
fixed reference in space is required. The reference chosen is
the first point of Aries, otherwise known as the vernal, or
spring, equinox. The vernal equinox occurs when the sun
crosses the equator going from south to north, and an
imaginary line drawn from this equatorial crossing through

Figure 24 Progende and retroprade orbits

the center of the sun points to the first point of Aries (symbol ~ =
). This is the line of Avries. T AN ineat
/ moddes
!
Figure 25 The argument of perigee  and the right ascen-

gion of the ascending node [0

Six Orbital Elements

+ Earth-orbiting artificial satellites are defined by six orbital elements
referred to as the keplerian element set.

e The semimajor axis a.
e The eccentricity e
— give the shape of the ellipse.

* Athird, the mean anomaly A, gives the position of the satellite in its
orbit at a reference time known as the epoch.

 Afourth, the argument of perigee o , gives the rotation of the orbit’s
perigee point relative to the orbit’s line of nodes in the earth’s
equatorial plane.

» The inclination /
» The right ascension of the ascending node y
— Relate the orbital plane’s position to the earth.




