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1. The modulo operation

 Definition

– Let a, r, n be integers and let q > 0

– We write a  r mod n if n divides a – r (or r – a) and 0  r < n

– n is called the modulus

– r is called the remainder

 Note that r is positive or zero

– Note that a = n.q + r where q is another integer (quotient)

 Example: 42  6 mod 9

– 9 divides 42 - 6 = 36

– 9 also divides 6 - 42 = -36

– Note that 42= 9x4 + 6 

 (q = 4)



5

Number Theory

 Natural numbers N = {1,2,3,…}

 Whole numbers W = {0,1,2,3, …}

 Integers Z = {…,-2,-1,0,1,2,3, …}

 Divisors

– A number b is said to divide a if a = mb for some m where a,b,m  Z

– We write this as b|a

 Read as “b divides a”
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Divisors

 Some common properties

– If a|1, a = +1 or –1

– If a|b and b|a then a = +b or –b

– Any b  Z divides 0 if b  0

– If b|g and b|h then b|(mg + nh) where b,m,n,g,h  Z

 Examples:

– The positive divisors of 42 are 1,2,3,6,7,14,21,42

– 3|6 and 3|21 => 3|21m+6n for m,n  Z
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Prime Numbers

 An integer p is said to be a prime number if its only positive 

divisors are 1 and itself

– Examples 2, 3, 7, 11, ..

 Any integer can be expressed as a unique product of prime 

numbers raised to positive integral powers

– n=p1
e
1 p2

e
2 …pk

e
k // n: ingterger, pi:prime, e,: positive integer

 Examples

– 7569 = 3 x 3 x 29 x 29 = 32 x 292

– 5886 = 2 x 27 x 109 = 2 x 33 x 109

 This process is called Prime Factorization
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Greatest common divisor (GCD)

 Definition: Greatest Common Divisor

– This is the largest divisor of both a and b

 Given two integers a and b, the positive integer c is called their 
GCD or greatest common divisor if and only if
– c | a and c | b

– Any divisor of both a and b also divides c

 Notation: gcd(a, b) = c

 Example: gcd(49,63) = ?

 gcd(a,b)=gcd(b, a mod b)

 Exception: gcd(0,0)=0
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Relatively Prime Numbers

 Two numbers are said to be relatively prime if their gcd is 1

– Example: 63 and 22 are relatively prime

 How do you determine if two numbers are relatively prime?

– Find their gcd or

– Find their prime factors

 If they do not have a common prime factor other than 1, they are relatively 

prime

– Example: 63 = 9 x 7 = 32 x 7 and 22 = 11 x 2
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Modular Arithmetic Again

 We say that a  b mod m if m | a – b

– Read as: a is congruent to b modulo m

– m is called the modulus

– Example: 27  2 mod 5

 Note that b is the remainder after dividing a by m

– Example: 27  2 mod 5 and 7  2 mod 5

 a  b mod m => b  a mod m

– Example: 2  27 mod 5

 We usually consider the smallest positive remainder which is 

sometimes called the residue
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Modulo Operation

 The modulo operation “reduces” the infinite set of integers to a 

finite set

 Example: modulo 5 operation

– We have five sets 

 {…,-10, -5, 0, 5, 10, …} => a  0 mod 5

 {…,-9, -4, 1, 6, 11,…}    => a  1 mod 5

 {…,-8, -3, 2, 7, 12,…}    => a  2 mod 5

 {…,-7, -2, 3, 8, 13,…}    => a  3 mod 5

 {…,-6, -1, 4, 9, 14…}     => a  4 mod 5

– The set of residues of integers modulo 5 has five elements {0,1,2,3,4} and 

is denoted Z5.
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Euler phi (or totient) function  

 For n ≥ 1, (n) : is the number of integers in [1,n] which are 

relatively prime to n // (n) is the Euler phi or totient function

 If p is prime, then (p)=p-1

 If gcd(m,n)=1, then (mn)= (m).(n)

 Examples: 

– (21)= (3).(7) = (3-1) * (7-1) =12
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multiplicative group Zn
*

 Definition: the multiplicative group Zn
* of Zn

– Zn
*={aZn | gcd(a,n)=1} 

– If n is prime then Zn
*={aZn | 1 ≤ a ≤ n-1}

– (n)= |Zn
*|

 Let n ≥ 2 be an integer

– Euler’s theorem: If g  Zn
* then g(n)  1 (mod n)  

– If n is a product of distinct primes, and if r  s mod ((n)),                     

then   gr  gs (mod n) for all integers g

– i.e., when working modulo an n, exponents can be reduced 

modulo (n)
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multiplicative group Zn
*

 Let p be a prime nubmer

– Fermat’s theorem: If gcd(a,p)=1, then gp-1  1 (mod p)

– If r  s mod (p-1) , then gr  gs (mod p) for all integers 

g

 i.e., when working modulo a prime p, exponents can be 

reduced modulo p-1

– Particular case: gp  g (mod p) for all integers g
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Generator of Zn
*

 Let g  Zn
*, the order of g is the least positive integer t such that

gt1 mod n

 If the order of g  Zn
* is t, and gs1 (mod n), then t divides s

– A particular case: t|(n)

 Let g  Zn
*, if the order of g is (n), then g is said to be a 

generator or a primitive element of Zn
*.

– If g is a generator of Zn
*, then Zn

*={gi mod n | 0 ≤ i ≤ (n) -1} 
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2. Public-key cryptography

 Called also asymmetric cryptography

 The keys used to encrypt and decrypt are different.

 Anyone who wants to be a receiver needs to “publish” an 
encryption key, which is known as the public key, KU. 

 Anyone who wants to be a receiver needs a unique decryption 
key, which is known as the private key, KR.

 If B wants to send an enciphered text to A, B should  knows the 
encryption algorithm and A’s public key.
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Confidentiality via Public key 
cryptography

 Alice wants to send a secret message m to Bob

 Bob should have 2 keys: public KUb and  private KRb

 Prior to message encryption, Alice gets by some means an 

authentic copy of Bob’s public key (i.e., the encryption key)

Message

Source
Encryption

Message

Source
Decryption

m Ciphertext m

Alice

Key Source
KUb

KRb

Bob
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Public-key cryptography

 It should not be possible to deduce the plaintext from knowledge 

of the ciphertext and the public key.

 It should not be possible to deduce the private key from 

knowledge of the public key.

 Public-key cryptography is based on One-Way Functions 
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3. One-Way Functions (OWF)

 A one-way function is a function that is “easy” to compute and 

“difficult” to reverse

 Examples of OWF that we’ll use in this lecture to explain public-

key systems:

– Multiplication of two primes 

– Modular exponentiation
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OWF: Multiplying two primes

 Multiplication of two prime numbers is believed to be a one-way 

function. 

 Given two prime numbers p and q

– It’s easy to find n=p.q

– However, starting from n, it’s difficult to find p and q

 Is it prime factorization?
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OWF: Modular exponentiation

 The process of exponentiation just means raising numbers to a 

power. 

 Raising a to the power b, normally denoted ab just means 

multiplying a by itself b times. In other words:

ab = a x a x a x … x a

 Modular exponentiation means computing ab modulo some 

other number n. We tend to write this as               

ab mod n.

 Modular exponentiation is “easy”.
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OWF: Modular exponentiation

 However, given a, and ab mod n (when n is prime), calculating b

is regarded by mathematicians as a hard problem. 

 This difficult problem is often referred to as the discrete 

logarithm problem.

 In other words, given a number a and a prime number n, the 

function 

f(b) = ab mod n

is believed to be a one-way function.
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4. RSA

 It is named after it inventors Ron Rivest, Adi Shamir and Len 

Adleman.

 Published in 1978

 It is the most widely used public-key encryption algorithm today.

 It provides confidentiality and digital signatures.

 Its security is based on the difficulty of integer factorization
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RSA algorithm (key generation for 

RSA public-key encryption)

 Each entity A creates a public key and a corresponding private 
key by doing the following

– Generate two large (at least 1024 bits) primes p and q

– Compute n=pq and (n)=(p-1)(q-1) .

– Choose e <  relatively prime to  (i.e., gcd (e, )=1)

– Compute d such that ed mod (n)  1

 A’s Public key: (e, n) // to be published.

 A’s private key: d (or (d, n)) // to be kept secretly by A

 Who is capable of computing d?
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RSA Encryption/decryption

 Summary: B encrypts a message m for A. Upon reception, A  

decrypts it using its private key.

 Encryption: B should do the following

– Obtain A’s authentic public key (n,e).

– Represent the message as an integer in  the interval [0,n-1]

– Compute c = me mod n //  Encryption

– Send the ciphertext c to A

 Decryption: to recover plaintext m from c, A does the following

– Use the private key d to recover m = cd mod n //  Decryption

 How does B obtain A’s authentic key? 



26

Example: confidentiality

 Take p = 7, q = 11, so n = 77 and (n) = 60

 Say Bob chooses (KUb) e = 17, making (KRb) d = 53

– 17 x 53 mod 60 = ? 

 Alice wants to secretly send Bob the message HELLO [07 04 11 

11 14]

– 0717 mod 77 = 28

– 0417 mod 77 = 16

– 1117 mod 77 = 44

– 1117 mod 77 = 44

– 1417 mod 77 = 42

 Alice sends ciphertext [28 16 44 44 42]
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Example: confidentiality

 Bob receives [28 16 44 44 42]

 Bob uses private key (KRb), d = 53, to decrypt the message:

– 2853 mod 77 = 07 H

– 1653 mod 77 = 04 E

– 4453 mod 77 = 11 L

– 4453 mod 77 = 11 L

– 4253 mod 77 = 14 O

 No one else could read it, as only Bob knows his private key and 

that is needed for decryption
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Attacking RSA

1. Trying to decrypt a ciphertext without knowledge of 

the private key

– The encryption process in RSA involves computing the 

function      c = me mod n, which is regarded as being easy

– An attacker who observes this ciphertext c, and has 

knowledge of e and n, needs to try to work out what m is.

– i.e., find m such that me = c mod n

– In other words, find the eth root of c mod n

 Computing m from c, e and n is regarded as a hard 

problem and known as RSA problem.
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Attacking RSA

2. If the attacker knows the public key of a user (e,n), what would 

she/he need to do in order to obtain the corresponding private 

key?

 He/she needs to find d such that ed mod (n) = 1

 i.e., needs to know p and q 

 In other words, he/she must factor n (problem of prime factorization)

 Recommended size of n:

– 768-bit is recommended 

– 1024-bit  or larger is required for long term security 

– it is believed that factoring a 512 bit number is about as hard as searching 

for a 56 bit symmetric key.
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5. El Gamal

 ElGamal is another public-key encryption

 We will also take a look at the ElGamal public key cipher system 

for a number of reasons:

– To show that RSA is not the only public key system

– To exhibit a public key system based on a different one way function

– ElGamal is the basis for several well-known cryptosystems
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ElGamal algorithm (key generation)

 Key generation for ElGamal public-key encryption

 Each entity A creates a public key and a corresponding private 

key.

– Generate a large prime number p (1024 bits)

– Generate a generator g of the multiplicative group Zp
* of the integers 

modulo p

– Select a random integer x, 1 ≤ x ≤ p-2

– Compute y = gx mod p

– A’s public key is (p, g, y)

 To be published 

– A’s private key is x

 To be kept secret by A
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ElGamal algorithm (key generation)

 Example

 Step 1: Let p = 2357

 Step 2: Select a generator g = 2 of Z2357
*

 Step 3: Choose a private key x = 1751

 Step 4: Compute y = 21751 (mod 2357) 

= 1185

 Public key is   (2357,2,1185)

 Private key is  1751
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ElGamal algorithm (Encryption/decryption)

 Summary: B encrypts a message m for A, which A decrypts

 Encryption: B should de the following

– Obtain A’s authentic public key (p, g, y).

– Represent the message as an integer in  the interval [0,p-1]

– Select an integer k, 1 ≤ k ≤ p-2

– Compute =gk mod p and =m.(y)k mod p

– Send the ciphertext c = (, ) to A

 Decryption

– A uses the private key x to compute z= p-1-x mod p

– A computes z. mod p (=m)
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ElGamal algorithm (Encryption/decryption)

 Encryption

– To encrypt m = 2035 using Public key (2357,2,1185)

– Generate a random number k = 1520

– Compute  = 21520 mod 2357 = 1430

 = 2035 x 11851520 mod 2357 =697 

– Ciphertext c = (1430 , 697)

 Decryption

– z= p-1-x mod p = 1430605 mod 2357 =872

– 872x697 mod 2357 = 2035
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ElGamal Properties

 There is a message expansion by a factor of 2

– i.e., the ciphertext is twice as long as the corresponding plaintext

 Requires a random number generator (k)

 Relies on discrete algorithm problem, i.e., having            y= gx 

mod p it’s hard to find x (the private key)

 ElGamal encryption is randomized (coming from the random 

number k), RSA encryption is deterministic.

 ElGamal is the basis of many other algorithms (e.g., DSA)
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Summary

 RSA is a public key encryption algorithm whose security is 

believed to be based on the problem of factoring large numbers.

 ElGamal is a public key encryption algorithm whose security is 

believed to be based on the discrete logarithm problem.

 RSA is generally favoured over ElGamal for practical rather than 

security reasons.

 RSA and ElGamal are less efficient and fast to operate than most 

symmetric encryption algorithms because they involve modular 

exponentiation.

– Public key cryptography confined to key management and signature 

applications.
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