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1. The modulo operation

m Definition
— Leta, r,nbeintegersand letq >0
— Wewritea=rmodnifndividesa—r(orr—a)and0<r<n
— nis called the modulus

— ris called the remainder
m Note that r is positive or zero

— Note that a = n.qg + r where g is another integer (quotient)

m Example: 42 =6 mod 9
— 9divides 42 - 6 =36
— 9also divides 6 - 42 = -36
— Note that 42=9x4 + 6
= (q=4)



Number Theory

m Natural numbers N = {1,2,3,...}
m Whole numbers W ={0,1,2,3, ...}
m IntegersZ2=1{...,-2,-1,0,1,2,3, ...}

m Divisors
— A number b is said to divide a if a = mb for some m where abm € Z

— We write this as bja
m Read as “b divides a”



Divisors

m Some common properties
— Ifall, a=+1lor-1
— If alb and bla then a = +b or —-b
— Anyb e Z dividesOifb =0
— If b|g and bl|h then b|(mg + nh) where b,m,n,g,h € Z

m Examples:
— The positive divisors of 42 are 1,2,3,6,7,14,21,42
— 3|6 and 3|21 => 3|21m+6n for m,n € Z



Prime Numbers

m An integer p Is said to be a prime number If its only positive
divisors are 1 and itself

— Examples 2, 3, 7, 11, ..

m Any integer can be expressed as a unique product of prime
numbers raised to positive integral powers

— N=pf1p,°%2 ..p &/l n:ingterger, p;:prime, e : positive integer

m Examples

— 7569 =3x3Xx29x29=3%2x292
— 5886=2x27x109=2x33x109

m This process is called Prime Factorization



Greatest common divisor (GCD)

m Definition: Greatest Common Divisor
— This is the largest divisor of both a and b

m Glven two Integers a and b, the positive integer c is called their
GCD or greatest common divisor if and only If
— c|laandc|b
— Any divisor of both a and b also divides ¢

m Notation: gcd(a, b) =c
m Example: gcd(49,63) = ?

m gcd(a,b)=gcd(b, a mod b)
m Exception: gcd(0,0)=0



Relatively Prime Numbers

m Two numbers are said to be relatively prime if their gcd is 1
— Example: 63 and 22 are relatively prime

m How do you determine if two numbers are relatively prime?
— Find their gcd or

— Find their prime factors

m [f they do not have a common prime factor other than 1, they are relatively
prime

— Example: 63=9x7=3?x7and22=11x2



Modular Arithmetic Again

m Wesaythat a=bmodmifm|a—b
— Read as: a Is congruent to b modulo m
— m is called the modulus
— Example: 27 =2 mod 5

m Note that b Is the remainder after dividing a by m
— Example: 27=2mod 5and 7 =2 mod 5

m a=bmodm=>b=amodm
— Example: 2 =27 mod 5

m \We usually consider the smallest positive remainder which is
sometimes called the residue
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Modulo Operation

m The modulo operation “reduces” the infinite set of integers to a
finite set

m Example: modulo 5 operation

— We have five sets
m {...,-10,-5,0,5,10,...} =a=0mod 5
{...,-9,-4,1,6,11,...} =>a=1mod5
m {...-8,-3,2,7,12,...} =a=2mod>5
{...,-7,-2,3,8,13,...} =a=3mod>5
{... -6 -1,4,9,14...} =a=4mod5

— The set of residues of integers modulo 5 has five elements {0,1,2,3,4} and
IS denoted Z-.
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Euler phi (or totient) function

m Forn>1, #4n) :isthe number of integers in [1,n] which are
relatively prime to n// ¢(n) Is the Euler phi or totient function

m If pis prime, then ¢p)=p-1
m If gcd(m,n)=1, then glmn)= Hm).H(n)
m Examples:

- #21)= ¢3).4(7) = (3-1) * (7-1) =12
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multiplicative group Z_*
‘-—Definition: the multiplicative group Z,,” of Z,

— 2, ={aeZ, | gcd(a,n)=1}

— If nisprime then Z,"={aeZ,| 1 <a <n-1}

- fn)= 12,

m Letn>2 bean integer
— Euler’s theorem: If g € Z,"then g#A" =1 (mod n)

— If nis a product of distinct primes, and if r =s mod (g#(n)),
then g" =g° (mod n) for all integers g

— 1.e., when working modulo an n, exponents can be reduced
modulo @(n)
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multiplicative group Z_*

m Let p be a prime nubmer
— Fermat’s theorem: If gcd(a,p)=1, then g°* =1 (mod p)
— If r =s mod (p-1) , then g" =g° (mod p) for all integers
g

m I.e., when working modulo a prime p, exponents can be
reduced modulo p-1

— Particular case: g° =g (mod p) for all integers g
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Generator of Z,”

m Letg €Z, the order of g is the least positive integer t such that
g'=1 mod n

m If the order of g € Z," ist, and g*=1 (mod n), then t divides s
— A particular case: t|@(n)

m Letg eZ,", if the order of g is ¢(n), then g is said to be a
generator or a primitive element of Z".
— If g is a generator of Z*, then Z,"={g' mod n | 0 <i < ¢(n) -1}
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2. Public-key cryptography

m Called also asymmetric cryptography

m The keys used to encrypt and decrypt are different.

m Anyone who wants to be a receiver needs to “publish” an
encryption key, which is known as the KU.

m Anyone who wants to be a receiver needs a unique decryption
key, which is known as the KR.

m |If B wants to send an enciphered text to A, B should knows the
encryption algorithm and A’s public key.
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Confidentiality via Public key
cryptography

m Alice wants to send a secret message m to Bob
m Bob should have 2 keys: public KU, and private KR,

m Prior to message encryption, Alice gets by some means an
authentic copy of Bob’s public key (i.e., the encryption key)

Ciphertext
Message - . Message
Encryption

KR,

[




Public-key cryptography

m |t should not be possible to deduce the plaintext from knowledge
of the ciphertext and the public key.

m |t should not be possible to deduce the private key from
knowledge of the public key.

m Public-key cryptography is based on One-Way Functions
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3. One-Way Functions (OWF)

AN 1s a function that 1s “easy” to compute and
“difficult” to reverse

m Examples of OWF that we’ll use 1n this lecture to explain public-
key systems:

— Multiplication of two primes
— Modular exponentiation
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OWF: Multiplying two primes

m Multiplication of two prime numbers is to be a one-way
function.

m Given two prime numbers p and g
— It’s easy to find h=p.q
— However, starting from n, it’s difficult to find p and g

m Is it prime factorization?

20



OWF: Modular exponentiation

The process of just means raising numbers to a
power.

Raising a to the power b, normally denoted 2" just means
multiplying @ by itself b times. In other words:

—aXaxadx..Xx

means computing 2” modulo some
other number . We tend to write this as

Modular exponentiation is “easy’’.
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OWF: Modular exponentiation

m However, given 2, and (when 1 Is prime), calculating
IS regarded by mathematicians as a hard problem.

m This difficult problem is often referred to as the

m In other words, given a number 2 and a prime number 1, the
function

IS believed to be a one-way function.
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4. RSA

It 1S named after 1t inventors Ron ~ivest, Adi Shamir and Len

dleman.

Published in 1978

It is the most widely used public-key encryption algorithm today.

It provides confidentiality and digital signatures.

Its security is based on the difficulty of integer factorization
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RSA algorithm (key generation for
RSA public-key encryption)

m Each entity A creates a public key and a corresponding private
key by doing the following

— Generate two large (at least 1024 bits) primes p and g
— Compute n=pg and ¢(n)=(p-1)(g-1) .

— Choose e < g relatively prime to ¢ (i.e., gcd (e, ¢)=1)
— Compute d such that ed mod ¢(n) =1

m A’s Public key: (e, n) // to be published.
m A’s private key: d (or (d, n)) // to be kept secretly by A

m Who is capable of computing d?
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RSA Encryption/decryption

m Summary: B encrypts a message m for A. Upon reception, A
decrypts It using Its private key.

m Encryption: B should do the following
— Obtain A’s authentic public key (n,e).
— Represent the message as an integer in the interval [0,n-1]
— Compute ¢ = m® mod n // Encryption
— Send the ciphertext c to A

m Decryption: to recover plaintext m from ¢, A does the following

— Use the private key d to recover m = c® mod n // Decryption

m How does B obtain A’s authentic key?
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Example: confidentiality

m Takep=7,g=11,son=77and #n) =60
m Say Bob chooses (KU,) e = 17, making (KR,) d = 53
— 17 x53 mod 60 =?
m Alice wants to secretly send Bob the message HELLO [07 04 11
11 14]
— 07" mod 77 = 28
— 04 mod 77 = 16
— 11 mod 77 = 44

— 11 mod 77 = 44
— 14" mod 77 = 42

m Alice sends ciphertext [28 16 44 44 42]
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Example: confidentiality

m Bob receives [28 16 44 44 42]

m Bob uses private key (KR,), d = 53, to decrypt the message:
— 28°mod 77 =07 H
— 16 mod77=04 E
— 44 mod77=11 L
— 44 mod77=11 L
— 42mod 77=14 O

m No one else could read it, as only Bob knows his private key and
that is needed for decryption
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Attacking RSA

‘ 1. Trying to decrypt a ciphertext without knowledge of
the private key

— The encryption process in RSA involves computing the
function ¢ = m® mod n, which is regarded as being easy

— An attacker who observes this ciphertext c, and has
knowledge of e and n, needs to try to work out what m is.

— 1.e., find m such that mé¢ = ¢ mod n
— In other words, find the et" root of ¢ mod n

m Computing m from c, e and n Is regarded as a hard
problem and known as RSA problem.
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Attacking RSA

If the attacker knows the public key of a user (e,n), what would
she/he need to do In order to obtain the corresponding private
key?

B He/she needs to find d such that ed mod ¢(n) =1

B i.e., needstoknow pandqg

B In other words, he/she must factor n (problem of prime factorization)

Recommended size of n:
— 768-bit is recommended
— 1024-bit or larger is required for long term security

— 1t is believed that factoring a 512 bit number is about as hard as searching
for a 56 bit symmetric key.
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5. El Gamal

m ElGamal is another public-key encryption

m We will also take a look at the EIGamal public key cipher system
for a number of reasons:
— To show that RSA is not the only public key system
— To exhibit a public key system based on a different one way function
— ElGamal is the basis for several well-known cryptosystems
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ElGamal algorithm (key generation)

m Key generation for EIGamal public-key encryption

m Each entity A creates a public key and a corresponding private
key.

Generate a large prime number p (1024 bits)

Generate a generator g of the multiplicative group Z,” of the integers
modulo p

Select a random integer x, 1 <x <p-2
Compute y = g*mod p
A’s public key is (p, g, Y)
m To be published
A’s private key 1s X
m To be kept secret by A
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ElGamal algorithm (key generation)

Example
Step 1: Let p = 2357

Step 2: Select a generator g = 2 of Z,5"
Step 3: Choose a private key x = 1751

Step 4. Compute y = 217> (mod 2357)

Public key Is
Private key Is 1751
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ElGamal a Igorith IM (Encryption/decryption)

m Summary: B encrypts a message m for A, which A decrypts

m Encryption: B should de the following
— Obtain A’s authentic public key (p, g, Y).
— Represent the message as an integer in the interval [0,p-1]
— Select an integer k, 1 <k <p-2
— Compute y=gkmod p and o=m.(y)* mod p

— Send the ciphertext ¢ = (y, d) to A

m Decryption
— A uses the private key x to compute z= »*1*mod p
— A computes z.0 mod p (=m)
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ElGamal a Igorith IM (Encryption/decryption)

m Encryption
— Toencrypt m = 2035 using Public key
— Generate a random number k = 1520
— Compute y= 2520 mod 2357 =
0=2035 X 1520 mod 2357 =

— Ciphertext c = ( ,
m Decryption

— 7= »1Xmod p = 1430°% mod 2357 =872
— 872x697 mod 2357 = 2035
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ElGamal Properties

m There Is a message expansion by a factor of 2
— l.e., the ciphertext Is twice as long as the corresponding plaintext

m Requires a random number generator (k)

m Relies on discrete algorithm problem, i.e., having y= g*
mod p it’s hard to find X (the private key)

m ElGamal encryption is randomized (coming from the random
number k), RSA encryption Is deterministic.

m ElGamal is the basis of many other algorithms (e.g., DSA)
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Summary

m RSA is a public key encryption algorithm whose security is
believed to be based on the problem of factoring large numbers.

m ElGamal is a public key encryption algorithm whose security is
believed to be based on the discrete logarithm problem.

m RSA is generally favoured over EIGamal for practical rather than
security reasons.

m RSA and ElGamal are less efficient and fast to operate than most
symmetric encryption algorithms because they involve modular
exponentiation.

— Public key cryptography confined to key management and signature
applications. ©
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