Oppenauer oxidation

- Aluminium t- butoxide [(CH₃)₃CO]₃Al in the presence of a ketone (such as cyclohexanone) as an hydride acceptor, oxidizes primary alcohols to aldehydes, and secondary alcohols to ketones.
- hydride receptor is used in excess to push the equilibrium to the right side.
- . Other functions (as alkene..) are not affected.

Oppenauer reaction mechanism

• Al- alkoxide transfers H- to cyclohexanone (hydride acceptor).

Oppenauer oxidation (semi-synthesis of Progesterone from pregnenolone)

Oxidation of secondary OH to ketone with the simultaneous shifting of the double bond from C_5 to C_4 forming stable conjugated enone.

 $(3\beta$ -hydroxypregn-5-en-20-one)

Drug Synthesis الاصطناع (التخليق) الدوائي

Some types of reactions used in drug synthesis 5. Reduction reactions

Types of Reduction Reactions

- . Reductive processes are divided into three categories:
- Addition of molecular hydrogen H₂ to the unsaturated systems (Catalytic hydrogenation of the unsaturated systems)
- Addition of hydrides H⁻ to the unsaturated systems (hydride reduction)
- Gain of electrons (Electron transfer reduction)

Catalytic hydrogenation

Selective catalytic hydrogenation of alkenes

 \bullet . Alkenes are easily and selectively reduced by $H_2/Pd-C$ reduces in the presence of other functions: aldehydes , ketones , esters, nitriles, carboxylic acid.

4-Phenyl-3-buten-2-one

 $\textbf{4-Phenyl-2-butanone} \; \textbf{(100\%)}$

 The aromatic ring requires more powerful reducing conditions such as Pt at high pressure or rhodium Rd catalysts ordinary conditions

$$\begin{array}{c|c} CH_3 & & CH_3 \\ \hline & & H_2, \text{Pt; ethanol} \\ \hline & CH_3 & & CH_3 \\ \end{array}$$

o-Xylene

1,2-Dimethylcyclohexane (100%)

Catalytic reduction of functional groups (H₂/ cat.)

Catalytic Reduction of Alkyl aryl ketone's

 Carbonyl function conjugated with aromatic ring (alkyl aryl ketones) is easily reduced to CH₂ by H₂/Pd, as in the reduction of alkenes

Reduction by hydrides

Mechanism of Reduction by hydrides

 Hydrides, as LiAlH₄, NaBH₄ are chemicals that donate H⁻ Example: the reduction of the carbonyl group by LiAlH₄

Reduction of functional groups by LiAIH₄

 \bullet Aldehydes, ketones, esters, amides and carboxylic acids are reduced by ${\rm LiAIH_4}$ to alcohols except the amides which give amines.

Reduction of nitriles by LiAIH₄

Nitriles give primary amines

$$R-C \equiv N: \xrightarrow{\text{LiAlH}_4} \begin{bmatrix} :N: \\ & \\ & \\ & \end{bmatrix} \xrightarrow{\text{LiAlH}_4} \xrightarrow{\text{H}} H \xrightarrow{\text{H}} H \xrightarrow{\text{H}_2O} \xrightarrow{\text{H}_2O} \xrightarrow{\text{H}} H \xrightarrow{\text{H}_2O} \xrightarrow{\text{H}_2O} \xrightarrow{\text{H}_2O} \xrightarrow{\text{NITrile}} \xrightarrow{\text{Planton Sincks Cole}} \text{Imine anion} \qquad \text{Dianion} \qquad \text{Amine}$$

Reduction of functional groups by NaBH₄

- NaBH₄ only reduces aldehydes and ketones.
- Esters, amides carboxylic acids and nitro (NO₂) are not affected by NaBH₄.

Selective reduction of carboxylic acid and amides by BH₃

- BH₃ reduces amides and carboxylic acids selectively.
- Esters, ketones aldehydes and NO₂ are not affected by BH₃

Reduction of esters to aldehydes by DIBAH

 Diisobutyl aluminium hydride (DIBAH) reduces esters and has no action on aldehydes

Electron transfer reduction

Reduction by transfer of electrons

 When metals such as sodium or lithium are dissolved in solvents such as liquid ammonia, they readily give up their single outer-shell electron and an intense blue solution of solvated electrons is formed.

Li + liquid NH₃
$$\xrightarrow{\text{fast}}$$
 $\xrightarrow{\bigoplus}$ $\xrightarrow{\bigoplus}$ $\xrightarrow{\text{Li}}$ $\xrightarrow{\text{e}[NH_3]_n}$ $\xrightarrow{\text{slow}}$ $\xrightarrow{NH_2}$ + 1/2 H₂ blue color strong base

electrons solvated by ammonia

• With the time, the blue color fades as the electrons reduce the ammonia to amide ion NH₂- and H₂ gas

Mechanism of Electron transfer reduction (Reduction of alkynes)

• Alkynes give trans alkenes (anti addition):

RC
$$=$$
 CR $\xrightarrow{\text{Na/NH}_3}$ $\xrightarrow{\text{R}}$ C $=$ C $\xrightarrow{\text{R}}$ $\xrightarrow{\text{Trans-alkene}}$

Mechanism

Electron transfer reduction (Reduction of benzene: Birch reduction)

This reaction performs 1,4-protonation with the formation of cyclohexa-1,4-diene

cyclohexa-1,4-diene

Birch reduction of methoxybenzene

- When EDG such as OCH₃ is present, protonation takes place at ortho and meta and 1-methoxycyclohexa-1,4diene is formed.
- Ethanol is added to serve as a better proton donor than NH₃.
- Acid hydrolysis of the enol ether product gives unsaturated ketone which tautomerises to the conjugated ketone (conjugated enone)

Synthesis of the anabolic Nandrolone

Hydrogenolysis