السنة الثالثة تأثير الأدوية2 د.رامز ونوس م7 ## Endocrine pancreas and the control of blood glucose ### **Pancreas** - A triangular gland, which has both exocrine and endocrine cells, located behind the stomach - Strategic location - Acinar cells produce an enzyme-rich juice used for digestion (exocrine product) - Pancreatic islets (islets of Langerhans) produce hormones involved in regulating fuel storage and use. Islets of Langerhans Common bile duct Pancreas Small intestine (duodenum) Pancreatic duct Alpha cells 📵 Glucagon D cells Somatostatin Beta cells Insulin, amylin kocrine cells ndocrine cells islet of Langerhans Alpha cells Beta cells D cells ### Islets of Langerhans - 1 million islets - 1-2% of the pancreatic mass - Beta (β) cells produce insulin, amylin - Alpha (α) cells produce glucagon - Delta (δ) cells produce somatostatin - F cells produce pancreatic polypeptide ### Insulin - Hormone of nutrient abundance - A protein hormone consisting of two amino acid chains linked by disulfide bonds - Synthesized as part of proinsulin and then excised by enzymes, releasing functional insulin (51 AA) and C peptide (29 AA). ### Insulin Structure PROINSULIN FROM SULIN S ## Protein and Polypeptide Synthesis and Release ### **Insulin Synthesis** - insulin gene encodes a large precursor of insulin (preproinsulin) - During translation, the signal peptide is cleaved (proinsulin) - During packaging in granules by Golgi, proinsulin is cleaved into insulin and C peptide ### **Insulin Secretion** # Regulation of Insulin Secretion Fig. 30.1 Factors regulating insulin secretion. Blood glucose is the most important factor. Drugs used to stimulate insulin secretion are shown in red-bordered boxes. Glucagon potentiates insulin release but opposes some of its peripheral actions and increases blood glucose. GIP, gastric inhibitory peptide; GIT, gastrointestinal tract; GLP-1, glucagon-like pentide-1. ### Regulation of Insulin Secretion - No insulin is produced when plasma glucose below 50 mg/dl - Half-maximal insulin response occurs at 150 mg/dl - A maximum insulin response occurs at 300 mg/dl #### Insulin secretion is biphasic: - Upon glucose stimulation— an initial burst of secretion (5-15 min.) - Then a second phase of gradual increment that lasts as long as blood glucose is high - ② low basal levels of circulating insulin are maintained through constant β-cell secretion which suppresses lipolysis, proteolysis, and glycogenolysis - A burst of insulin secretion occurs within 2 minutes after a meal, in response to transient increases in circulating glucose and amino acids - This lasts for up to 15 minutes and is followed by the postprandial secretion of insulin Fig. 30.2 Schematic diagram of the two-phase release of insulin in response to a constant glucose infusion. The first phase is missing in type 2 (non-insulin-dependent) diabetes mellitus, and both are missing in type 1 (insulin-dependent) diabetes mellitus. The first phase is also produced by amino acids, sulfonylureas, glucagon and gastrointestinal tract hormones. (Data from Pfeifer et al. 1981 Am J Med 70: 579–588.) ### Control Of Blood Glucose | ormone | Main actions | Main stimuli for secretion | Main effect | |---------------------------|----------------------|-----------------------------------|-----------------| | lain regulatory hormone | | | | | isulin | † Glucose uptake | 요즘 하는 없는 말이 아름답니다. | | | | 1 Glycogen synthesis | Agute rise in blood glucose | | | | ↓ Glycogenolysis | Incretins (GIP and GLP-1) | | | | Gluconeogenesis | | | | lain counter-regulatory h | ormones | | | | lucagon | 1 Glycogenolysis | | | | | † Glyconeogenesis | | | | drenaline (epinephrine) | † Glycogenolysis | Hypoglycaemia (i.e. blood glucose | | | Glucocorticoïds | \$ Glucose uptake | <3 mmol/l), (e.g. with exercise, | T Blood glucose | | | Gluconeogenesis | stress, high protein meals), etc. | | ### Effects of insulin | Type of metabolism | Liver cells | Fat cells | Muscle | |-------------------------|-------------------------|-----------------------------|--------------------| | Carbohydrate metabolism | Gluconeogenesis | [†] Glucose uptake | ↑ Glucose uptake | | | ↓ Glycogenolysis | ↑ Glycerol synthesis | ↑ Glycolysis | | | ¹ Glycolysis | | f Glycogenesis | | | | | | | at metabolism | 1 Lipogenesis | Synthesis of triglycerides | - | | | ↓ Lipolysis | 1 Fatty acid synthesis | | | | | ♣ Lipolysis | | | Protein metabolism | ↓ Protein breakdown | | 1 Amino acid uptal | ### Insulin Signaling Fig. 30.3 Insulin signalling pathways. I, insulin Gut-4, an insulin-sensible guccose transporter pretent in muscle and fat cells; #65, insulin receptor substrate (several forms: 1-4). ### Insulin Signaling ### Diabetes Mellitus - ➤ Diabetes is heterogeneous group of syndromes characterized by an elevation of blood glucose caused by relative or absolute deficiency of insulin - ▶ There are four clinical classifications of diabetes: - · Type 1 diabetes (insulin dependent diabetes mellitus) - · Type 2 diabetes (non-insulin dependent diabetes mellitus) - · Gestational diabetes - Diabetes due to other causes (genetic defects or medications, etc) #### How is diabetes screened and diagnosed? ## Criteria for Screening for T2D and Prediabetes in Asymptomatic Adults - Age ≥45 years without other risk factors - Family history of T2D - CVD - Overweight - BMI ≥30 kg/m² - BMI 25-29.9 kg/m² plus other risk factors* - Sedentary lifestyle - Member of an at-risk racial or ethnic group: Asian, African American, Hispanic, Native American, and Pacific Islander - Dyslipidemia - HDL-C <35 mg/dL - Triglycerides >250 mg/dL - IGT, IFG, and/or metabolic syndrome - PCOS, acanthosis nigricans, NAFLD - Hypertension (BP >140/90 mm Hg or therapy for hypertension) - History of gestational diabetes or delivery of a baby weighing more than 4 kg (9 lb) - Antipsychotic therapy for schizophrenia and/or severe bipolar disease - · Chronic glucocorticoid exposure - Sleep disorders[†] in the presence of glucose intolerance - Screen at-risk individuals with glucose values in the normal range every 3 years - Consider annual screening for patients with 2 or more risk factors ^{*}At-risk BMI may be lower in some ethnic groups; consider using waist circumference. [†]Obstructive sleep apnea, chronic sleep deprivation, and night shift occupations #### How is diabetes screened and diagnosed? ## Diagnostic Criteria for Prediabetes and Diabetes in Nonpregnant Adults | Normal | High Risk for Diabetes | Diabetes | |-------------------|--|--| | FPG <100 mg/dL | IFG
FPG ≥100-125 mg/dL | FPG ≥126 mg/dL | | 2-h PG <140 mg/dL | IGT
2-h PG ≥140-199 mg/dL | 2-h PG ≥200 mg/dL
Random PG ≥200 mg/dL +
symptoms* | | A1C <5.5% | 5.5 to 6.4%
For screening of prediabetes [†] | ≥6.5%
Secondary [‡] | ^{*}Polydipsia (frequent thirst), polyuria (frequent urination), polyphagia (extreme hunger), blurred vision, weakness, unexplained weight loss. FPG, fasting plasma glucose; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; PG, plasma glucose. ### How is diabetes screened and diagnosed? ## Diagnostic Criteria for Gestational Diabetes | Test | Screen at 24-28 weeks gestation | | | |--|---------------------------------|--|--| | FPG, mg/dL | >92 | | | | 1-h PG*, mg/dL | ≥180 | | | | 2-h PG*, mg/dL | ≥153 | | | | *Measured with an OGTT performed 2 hours after 75-g oral glucose load. | | | | [†]A1C should be used only for screening prediabetes. The diagnosis of prediabetes, which may manifest as either IFG or IGT, should be confirmed with glucose testing. [‡]Glucose criteria are preferred for the diagnosis of DM. In all cases, the diagnosis should be confirmed on a separate day by repeating the glucose or A1C testing. When A1C is used for diagnosis, follow-up glucose testing should be done when possible to help manage DM. - Gestational diabetes is defined as carbohydrate intolerance with onset or first recognition during pregnancy - It is important to maintain adequate glycemic control during pregnancy - Uncontrolled gestational diabetes can lead to fetal macrosomia (abnormally large body), shoulder dystocia (difficult delivery), and neonatal hypoglycemia - Diet, exercise, and or insulin administration are effective in this condition | | Type 1 | Type 2 | | |---|--|--|--| | Age of onset | Usually during childhood or puberty | Commonly over
age 35 | | | Nutritional
status at time
of onset | Commonly
undernourished | Obesity usually present | | | Prevalence | 5 to 10 percent
of diagnosed
diabetics | 90 to 95 percent
of diagnosed
diabetics | | | Genetic
predisposition | Moderate | Very strong | | | Defect or
deficiency | β cells are destroyed, eliminating the production of insulin | Inability of β cells to produce appropriate quantities of insulin; insulin resistance; other defects | | ## Type 1 diabetes - Absolute deficiency of insulin caused by massive β-cell necrosis - ${\ }^{\ }$ Loss of β -cell function is usually ascribed to autoimmune- mediated processes against the β cell - May be triggered by an invasion of viruses or the action of chemical toxins ## Type I diabetes - Shows classic symptoms of insulin deficiency (polydipsia, polyphagia, polyuria, and weight loss) - Require exogenous (injected) insulin to control hyperglycemia and maintain blood glucose concentrations as close to normal as possible - Treatment helps in avoiding hyperglycemia and life-threatening ketoacidosis ## Type I diabetes (T1DM) - The development and progression of neuropathy, nephropathy, and retinopathy are directly related to the extent of glycemic control (measured as blood levels of glucose and/or HbA1c) ## Type 2 diabetes - Most diabetic cases - Influenced by genetic factors, aging, obesity, and peripheral insulin resistance, rather than autoimmune processes or viruses - The metabolic alterations observed are milder than those described for type 1 - The long-term clinical consequences can be as devastating - \square The β -cell mass may become gradually reduced in type 2 - In contrast to patients with type 1, type 2 diabetes are often obese - Frequently accompanied by the lack of sensitivity of target organs to either endogenous or exogenous insulin ### Type 2 diabetes (T2DM) - The goal in treating T2DM is to maintain blood glucose concentrations within normal limits and to prevent the development of long-term complications of the disease - Weight reduction, exercise, and dietary modification decrease insulin resistance and correct the hyperglycemia of type 2 diabetes in some patients - Most patients are dependent on pharmacologic intervention with oral glucose-lowering agents - $^{\circ}$ As the disease progresses, β -cell function declines and insulin therapy is often required ## Type 2 diabetes Figure 25.4 Major factors contributing to hyperglycemia observed in type 2 diabates Figure 25.5 Duration of type 2 diabetes mellitus, sufficiency of endogenous insulin, and recommended sequence of therapy. #### **Treatment** Lifestyle intervention Hypoglycaemic drugs Weight loss Insulin & Others Oral Increased exercise hypoglycemic insulin [incretins, pramlintide] drugs analogs 1. Biguanides 2. Sulfonylureas 3. Meglitinide analogs 4. Thiazolidinediones 5. α-Glucosidase Inhibitors 6. DPP-4 Inhibitors ### How are glycemic targets achieved for T2D? ### Therapeutic Lifestyle Changes | Parameter | Treatment Goal | | | |---|---|--|--| | Weight loss
(for overweight and
obese patients) | Reduce by 5% to 10% | | | | Physical activity | 150 min/week of moderate-intensity exercise (eg, brisk walking) plus flexibility and strength training | | | | Diet | Eat regular meals and snacks; avoid fasting to lose weight Consume plant-based diet (high in fiber, low calories/glycemic index, and high in phytochemicals/antioxidants) Understand Nutrition Facts Label information Incorporate beliefs and culture into discussions Use mild cooking techniques instead of high-heat cooking Keep physician-patient discussions informal | | | ## Healthful Eating Recommendations | Carbohydrate | Specify healthful carbohydrates (fresh fruits and vegetables, legumes, whole grains); target 7-10 servings per day Preferentially consume lower-glycemic index foods (glycemic index score <55 out of 100: multigrain bread, pumpernickel bread, whole oats, legumes, apple, lentils, chickpeas, mango, yams, brown rice) | |----------------|---| | Fat | Specify healthful fats (low mercury/contaminant-containing nuts, avocado, certain plant oils, fish) Limit saturated fats (butter, fatty red meats, tropical plant oils, fast foods) and trans fat; choose fat-free or low-fat dairy products | | Protein | Consume protein in foods with low saturated fats (fish, egg whites, beans); there is no need to avoid animal protein Avoid or limit processed meats | | Micronutrients | Routine supplementation is not necessary; a healthful eating meal plan can generally provide sufficient micronutrients Chromium; vanadium; magnesium; vitamins A, C, and E; and CoQ10 are not recommended for glycemic control Vitamin supplements should be recommended to patients at risk of insufficiency or deficiency | ### How are glycemic targets achieved for T2D? ### Noninsulin Agents Available for T2D | Class | Primary Wechanism of Action | Agent(s) | Available as | |--------------------------|--|---|---| | α-Glucosidase inhibitors | Delay carbohydrate absorption from intestine | Acarbose
Miglitol | Precose or generic
Glyset | | Amylin analogue | Decrease glucagon secretionSlow gastric emptyingIncrease satiety | Pramlintide | Symlin | | Biguanide | Decrease HGPIncrease glucose uptake in muscle | Metformin | Glucophage or generic | | Bile acid sequestrant | Decrease HGP?Increase incretin levels? | Colesevelam | WelChol | | DPP-4 inhibitors | Increase glucose-dependent insulin secretion Decrease glucagon secretion | Alogliptin
Linagliptin
Saxagliptin
Sitagliptin | Nesina
Tradjenta
Onglyza
Januvia | | Dopamine-2 agonist | Activates dopaminergic receptors | Bromocriptine | Cycloset | | Glinides | Increase insulin secretion | Nateglinide
Repaglinide | Starlix or generic
Prandin | ### How are glycemic targets achieved for T2D? ## Noninsulin Agents Available for T2D | Class | Primary Mechanism of Action | Agent(s) | Available as | |-------------------------|---|--|---| | GLP-1 receptor agonists | Increase glucose-dependent insulin secretion Decrease glucagon secretion Slow gastric emptying Increase satiety | Albiglutide Dulaglutide Exenatide Exenatide XR Liraglutide | Tanzeum Trulicity Byetta Bydureon Victoza | | SGLT2 inhibitors | Increase urinary excretion of glucose | Canagliflozin
Dapagliflozin
Empagliflozin | Invokana
Farxiga
Jardiance | | Sulfonylureas | Increase insulin secretion | Glimepiride
Glipizide
Glyburide | Amaryl or generic
Glucotrol or generic
Diaβeta, Glynase,
Micronase, or generic | | Thiazolidinediones | Increase glucose uptake in muscle and fat Decrease HGP | Pioglitazone
Rosiglitazone | Actos
Avandia | GLP-1 = glucagon-like peptide; HGP = hepatic glucose production; SGLT2 = sodium glucose cotransporter 2.