
1

Dr. Mohammad Ahmad

White Box Testing Techniques

2

Organization of this

Lecture

White-box testing:
statement coverage
path coverage
branch testing
condition coverage
Cyclomatic complexity

Summary

3

White-box Testing

Designing white-box test
cases:

requires knowledge about
the internal structure of
software.

white-box testing is also
called structural testing.

4

White-Box Testing

There exist several popular white-box
testing methodologies:

Statement coverage

branch coverage

path coverage

condition coverage

mutation testing

data flow-based testing

5

Statement Coverage

Statement coverage
methodology:

design test cases so that

every statement in a
program is executed at least
once.

6

Statement Coverage

The principal idea:

unless a statement is
executed,

we have no way of knowing if
an error exists in that
statement.

7

Statement coverage

criterion

Based on the observation:
an error in a program can
not be discovered:
unless the part of the
program containing the error
is executed.

8

Statement coverage

criterion

Observing that a statement
behaves properly for one input
value:

no guarantee that it will
behave correctly for all input
values.

9

Example

int f1(int x, int y){
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x; }

10

Euclid's GCD computation

algorithm

By choosing the test set
{(x=3,y=3),(x=4,y=3),
(x=3,y=4)}

all statements are executed at
least once.

11

Branch Coverage

Test cases are designed
such that:

different branch conditions

given true and false values
in turn.

12

Branch Coverage

Branch testing guarantees
statement coverage:

a stronger testing
compared to the statement
coverage-based testing.

13

Stronger testing

Test cases are a superset of a
weaker testing:

discovers at least as many
errors as a weaker testing

contains at least as many
significant test cases as a weaker
test.

14

Example

int f1(int x,int y){
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x; }

15

Example

Test cases for branch
coverage can be:

{(x=3,y=3),(x=3,y=2),
(x=4,y=3), (x=3,y=4)}

16

Condition Coverage

Test cases are designed such
that:

each component of a
composite conditional
expression

given both true and false
values.

17

Example

Consider the conditional
expression
((c1.and.c2).or.c3):

Each of c1, c2, and c3 are
exercised at least once,
i.e. given true and false
values.

18

Branch testing

Branch testing is the
simplest condition testing
strategy:

compound conditions
appearing in different branch
statements

are given true and false
values.

19

Branch testing

Condition testing
stronger testing than branch
testing:

Branch testing
stronger than statement
coverage testing.

20

Condition coverage

Consider a boolean
expression having n
components:

for condition coverage we
require 2n test cases.

21

Condition coverage

Condition coverage-based
testing technique:

 practical only if n (the
number of component
conditions) is small.

22

Path Coverage

Design test cases such
that:

all linearly independent
paths in the program are
executed at least once.

23

Linearly independent

paths

Defined in terms of

control flow graph (CFG) of
a program.

24

Path coverage-based

testing

To understand the path
coverage-based testing:

we need to learn how to draw
control flow graph of a
program.

25

Control flow graph

(CFG)

A control flow graph (CFG)
describes:
the sequence in which
different instructions of a
program get executed.
the way control flows through
the program.

26

How to draw Control

flow graph?

Number all the statements of
a program.

Numbered statements:

represent nodes of the control
flow graph.

27

How to draw Control

flow graph?

An edge from one node to
another node exists:

if execution of the statement
representing the first node

can result in transfer of
control to the other node.

28

Example

int f1(int x,int y){
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x; }

29

Example Control Flow

Graph

1

2

3 4

5

6

30

How to draw Control

flow graph?

Sequence:

1 a=5;

2 b=a*b-1;

1

2

31

How to draw Control

flow graph?

Selection:

1 if(a>b) then

2 c=3;

3 else c=5;

4 c=c*c;

1

2 3

4

32

How to draw Control

flow graph?

Iteration:

1 while(a>b){

2 b=b*a;

3 b=b-1;}

4 c=b+d;

1

2

3

4

33

Path

A path through a program:

a node and edge sequence
from the starting node to a
terminal node of the control
flow graph.

 There may be several terminal
nodes for program.

34

Independent path

Any path through the
program:

introducing at least one new
node:

that is not included in any other
independent paths.

35

Independent path

It is straight forward:

to identify linearly independent
paths of simple programs.

For complicated programs:

it is not so easy to determine the
number of independent paths.

36

McCabe's cyclomatic

metric

An upper bound:
for the number of linearly

independent paths of a program

Provides a practical way of
determining:
the maximum number of linearly

independent paths in a program.

37

McCabe's cyclomatic

metric

Given a control flow graph G,
cyclomatic complexity V(G):

 V(G)= E-N+2

N is the number of nodes in G

E is the number of edges in G

38

Example Control Flow

Graph

1

2

3 4

5

6

39

Example

Cyclomatic complexity =
7-6+2 = 3.

40

Cyclomatic complexity

Another way of computing cyclomatic
complexity:

inspect control flow graph

determine number of bounded areas in
the graph

V(G) = Total number of bounded
areas + 1

41

Bounded area

Any region enclosed by a
nodes and edge sequence.

42

Example Control Flow

Graph

1

2

3 4

5

6

43

Example

From a visual examination of
the CFG:

the number of bounded areas
is 2.

cyclomatic complexity =
2+1=3.

44

Cyclomatic complexity

McCabe's metric provides:
a quantitative measure of testing
difficulty and the ultimate reliability

Intuitively,
number of bounded areas

increases with the number of
decision nodes and loops.

45

Cyclomatic complexity

The first method of computing
V(G) is amenable to automation:

you can write a program which
determines the number of nodes
and edges of a graph

applies the formula to find V(G).

46

Cyclomatic complexity

The cyclomatic complexity of a
program provides:

a lower bound on the number of
test cases to be designed

to guarantee coverage of all
linearly independent paths.

47

Cyclomatic complexity

Defines the number of
independent paths in a
program.

Provides a lower bound:

for the number of test cases
for path coverage.

48

Cyclomatic complexity

Knowing the number of test
cases required:

does not make it any easier to
derive the test cases,

only gives an indication of the
minimum number of test cases
required.

49

Path testing

The tester proposes:

an initial set of test data using
his experience and judgement.

50

Path testing

A dynamic program analyzer is
used:
to indicate which parts of the

program have been tested

the output of the dynamic analysis
used to guide the tester in selecting
additional test cases.

51

Derivation of Test

Cases

Let us discuss the steps:

to derive path coverage-
based test cases of a
program.

52

Derivation of Test

Cases

Draw control flow graph.

Determine V(G).

Determine the set of linearly
independent paths.

Prepare test cases:

to force execution along each
path.

53

Example

int f1(int x,int y){
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x; }

54

Example Control Flow

Diagram

1

2

3 4

5

6

55

Derivation of Test Cases

Number of independent
paths: 3

1,6 test case (x=1, y=1)

1,2,3,5,1,6 test case(x=1,
y=2)

1,2,4,5,1,6 test case(x=2,
y=1)

56

An interesting application

of cyclomatic complexity

Relationship exists between:

McCabe's metric

the number of errors existing
in the code,

the time required to find and
correct the errors.

57

Cyclomatic complexity

Cyclomatic complexity of a
program:

also indicates the
psychological complexity of a
program.

difficulty level of
understanding the program.

58

Cyclomatic complexity

From maintenance perspective,
limit cyclomatic complexity
of modules to some reasonable
value.

Good software development
organizations:
restrict cyclomatic complexity of
functions to a maximum of ten or so.

59

Summary

White box testing:

requires knowledge about
internals of the software.

Design and code is
required.

60

Summary

We have discussed a few white-
box test strategies.

Statement coverage

branch coverage

condition coverage

path coverage

61

Summary

A stronger testing strategy:

provides more number of
significant test cases than a
weaker one.

Condition coverage is
strongest among strategies we
discussed.

62

Summary

We discussed McCabe’s
Cyclomatic complexity metric:

provides an upper bound for
linearly independent paths

correlates with understanding,
testing, and debugging difficulty of
a program.

