Introducing the Java (Cont.1)

_ OO VRO ~NODWUuLHE WN=-

// Fig. 2.1: Welcomel.java . -
// Text-printing program. /* For several lines */

public class Welcomel

{‘:

e——

// main method begins execution of Java application

public static void main(String[] args)

{ - —

System.out.printin("Welcome to Java Programming!");
} // end method main
} // end class Welcomel

Every Java program consists of at least one class that you define.
Java is case sensitive—uppercase.

javac welcomel.java
javadoc welcomel.java

Class Welcomel is public and should be declared in file named Welcomel.java

1-2

Declaring more than one public class in the same file
is a compilation error.

/] Fig. 2.3: Welcome2.java

|

2

3

4 public class Welcome2

5 {

6

| public static void main(String[] args)

8

9 System.out.print("Welcome to ");

10 System.out.printIn("Java Programming!");

1 } // end method main
12 } // end class Welcome2

// Printing a 1ine of text with multiple statements.

// main method begins execution of Java application

P

PrintsWeTcome to and leaves cursor on
same line

\

WeTcome to Java Programming!

Prints Java Programming! starting
where the cursor was positioned
previously, then outputs a newline
character

1-3

Each ‘\n moves the output cursor to the
next line, where output continues

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple Tines of text with a single statement.
3
4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println{ "Welcome\nto\nJava‘nProgramming!"); =
10 } // end method main
Il } // end class Welcome3
Welcome
to
Java

Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

1-4

4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
. i c b Each \n moves the output cursor to the
! y - : -
l: . /Eyzﬁgmé'g:ﬁ;zr; 2::;"(Welcome\nto\nlava\nProgramming!"); e Wt (e
11 } // end class Welcome3
Welcome
to
Java
Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

1-5

\n
\t
\r

\\
\ll

Newline. Position the screen cursor at the beginning of the next line.
Horizontal tab. Move the screen cursor to the next tab stop.

Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters outpur after the car-
riage return overwrite the characters previously output on that line.

Backslash. Used to print a backslash character.

Double quote. Used to print a double-quote character. For example,
System.out.println("\"in quotes\"");
displays

"in quotes"

Fig. 2.5 | Some common escape sequences.

| // Fig. 2.6: Welcomed.java
2 // Displaying multiple Tines with method System.out.printf,
3
4 public class Welcomed
S {
6 // main method begins execution of Java application
ublic static void main(String[] ar .
: ? (Stringl) args) Each %s is a placeholder for a String
9 Systetnout.printFC S\ | that comes ater in the argument it

10 "lieTcome to", "Java Programming!"); i
Il }// end nethod main |inae Semenscan e split over multiple

12} // end class Welcomed

Welcome to
Java Programming!

1-6

 import declaration
« Helps the compiler locate a class that is used in this program.

* Rich set of predefined classes that you can reuse rather than
“reinventing the wheel.”

« Classes are grouped into packages—named groups of related
classes—and are collectively referred to as the Java class
library, or the Java Application Programming Interface (Java
API).

« You use 1mport declarations to identify the predefined classes
used in a Java program.

* Prompt

« Qutput statement that directs the user to take a specific action.
« Systemisaclass.

- Part of package java. lang.

e Class Systemis not imported with an import declaration at
the beginning of the program.

1-7

1-8

Scanner
Enables a program to read data for use in a program.

Data can come from many sources, such as the user at the keyboard or
a file on disk.

Before using a Scanner, you must create it and specify the source of
the data.

The equals sign (=) in a declaration indicates that the variable
should be initialized (i.e., prepared for use in the program)
with the result of the expression to the right of the equals sign.

The new keyword creates an object.

Standard input object, System. in, enables applications to
read bytes of information typed by the user.

Scanner object translates these bytes into types that can be
used in a program.

I // Fig. 2.7: Addition.java

2 // Addition program that displays the sum of two numbers. —
3 import java.util.Scanner; // program uses class Scanﬂep__________|mp0nschssScannerkase|nths
4 program

5 public class Addition

6 {

7 // main method begins execution of Java application

8 public static void main(String[] args)

9 {

10 // create a Scanner to obtain input from the command window Cre;-tes :can;\er fo':
I Scanner input = new Scanner(System.in); = reading data from the
12 user

13 int numberl; // first number to add :

14 int number2; // second number to add - Yipﬁkzﬂwtmededamdbutnot
I5 int sum; // sum of numberl and number?2 (Al

16

17 System.out.print("Enter first integer: "); // prompt s

18 numberl = input.nextInt(); // read first number from user = Reads an int value
19 from the user
20 System.out.print("Enter second integer: "); // prompt 2
21 number2 = input.nextInt(); // read second number from user = Reads another int
22 value from the user
23 sum = numberl + number2; // add numbers, then store total in sum

.\
- ———— | Sums the values of
numberl and number2
25 System.out.printf("Sum is %d\n", sum); // display sum
26 } // end method main
27 3} // end class Addition . Integer formatted output
System.out.printf("sum is %d\n", sum);
E £ : 45 . Format specifier %d is a placeholder for an int value
ey manst jinregess . The letter d stands for “decimal integer.”

Enter second integer: 72

Sum is 117

1-9

Java operation Operator Algebraic expression Java expression

Addition + f+7 f+7
Subtraction = p-c p-c
Multiplication = bm b *m
Division 4 x/y or 3-‘; or x+y x/y
Remainder % rmod s r%s

Fig. 2.11 | Arithmetic operators.

Operation(s) Order of evaluation (precedence)

* Muldplication Evaluated first. If there are several operators of this
/ Division type, they are evaluated from left to right.

% Remainder

+ Addition Evaluated next. If there are several operators of this
- Subtraction type, they are evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

1-10

Standard algebraic Java equality Sample

equality or relational or relational Java Meaning of

operator operator condition Java condition

Equality operators

= == X =Y x;is eKllnal oy

= X l=y X is not equal to y

Relational operators

> X >y X is greater than y

< X <y X is less than y

2 >= X >=y X is greater than or equal to y
< <= X <=y X is less than or equal to y

Fig. 2.14 | Equality and relational operators.

1-11

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

if (numberl == number2)
System.out.printf("%d

if (numberl != number2)
System.out.printf("%d

if (numberl < number2)
System.out.printf("%d

if (numberl > number2)
System.out.printf("%d

if (numberl <= number2)
System.out.printf("%d

if (numberl >= number2)
System.out.printf("%d
} // end method main

} // end class Comparison

== %d\n", numberl, number2);

l= %d\n", numberl, number2);

-

< %d\n", numberl, number2);

> %d\n", numberl, number2);

<= %d\n", numberl, number2);

>= %d\n", numberl, number2);

-

Output statement executes only if the
numbers are equal

-

Output statement executes only if the
numbers are not equal

Output statement executes only if
numberl is less than number?2

-

Output statement executes only if
numberl is greater than number2

-

Output statement executes only if
numberl is less than or equal to
number2

Loy

Output statement executes only if
numberl is greater than or equal to
number2

Fig. 2.15 | Compare integers using if statements, relational operators and equality
operators. (Part 2 of 3.)

1-12

