Real-Time Systems

RMS and EDF Schedulers

Priority-driven Preemptive Scheduling

Assumptions & Definitions

- Tasks are periodic
- No aperiodic or sporadic tasks
- Job (instance) deadline = end of period
- No resource constraints
- Tasks are preemptable
- Laxity of a Task
- Ti = d_i (t + c_i') where di: deadline; t : current time;

c_i': remaining computation time.

Rate Monotonic Scheduling (RMS)

Schedulability check (off-line)

- A set of <u>*n* tasks</u> is schedulable on a uniprocessor by the RMS algorithm if the processor utilization (utilization test):

$$\sum_{i=1}^{n} c_i / p_i \le n(2^{1/n} - 1).$$

The term $n(2^{1/n}-1)$ approaches ln 2, (≈ 0.69 as $n \rightarrow \infty$).

- This condition is sufficient, but not necessary.

RMS (cont.)

- Schedule construction (online)
 - Task with the smallest period is assigned the highest priority.
 - At any time, the highest priority task is executed.

RMS is an optimal preemptive scheduling algorithm with <u>fixed priorities.</u>

Static/fixed priority algorithm assigns the <u>same</u> priority to all the jobs (instances) in each task.

RMS Scheduler -- Example 1

RMS scheduler -- Example-2

Some task sets that FAIL the utilization-based schedulability test are also schedulable under RMS \rightarrow We need exact analysis (necessary & sufficient)

Earliest Deadline First (EDF)

Schedulability check (off-line)

- A set of <u>*n*</u> tasks is schedulable on a uniprocessor by the EDF algorithm if the processor utilization.

$$\sum\limits_{i=1}^n c_i/p_i \leq 1$$

This condition is both <u>necessary</u> and <u>sufficient.</u>

Least Laxity First (LLF) algorithm has the same schedulability check.

EDF/LLF (cont.)

- Schedule construction (online)
 - EDF/LLF: Task with the smallest deadline/laxity is assigned the highest priority.
 - At any time, the highest priority task is executed.

EDF/LLF is an optimal preemptive scheduling algorithm with <u>dynamic priorities.</u>

Dynamic priority algorithm assigns <u>different</u> priorities to the individual jobs (instances) in each task.

EDF scheduler -- Example

Task set: T_i = (c_i, p_i, d_i)

T1 = (1,3,3) and T2 = (4,6,6)

Unlike RMS, Only those task sets which pass the schedulability test are schedulable under EDF

RMS vs. EDF/LLF

- RMS is an optimal preemptive scheduling algorithm with <u>fixed priorities.</u>
- EDF/LLF is an optimal preemptive scheduling algorithm with <u>dynamic priorities</u>.
- RMS schedulability properties can be analyzed; rich theory exists and it is widely used in practice.
- EDF/LLF offers higher schedulability than RMS, but it is more difficult to implement.

RMS vs. EDF/LLF

	RMS	EDF
Priorities	Static	Dynamic
Works with OS with fixed priorities	Yes	No*
Uses full computational power of processor	No, just up till $\mu = n(2^{1/n}-1)$	Yes
Possible to exploit full computational power of processor without provisioning for slack	No	Yes