
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

■ Background
■ The Critical-Section Problem
■ Peterson’s Solution
■ Synchronization Hardware
■ Mutex Locks
■ Semaphores
■ Classic Problems of Synchronization
■ Monitors
■ Synchronization Examples
■ Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

■ To present the concept of process synchronization.
■ To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data
■ To present both software and hardware solutions of the

critical-section problem
■ To examine several classical process-synchronization

problems
■ To explore several tools that are used to solve process

synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

■ A cooperating process is one that can affect or be affected by
other processes

■ Cooperating processes need interprocess communication (IPC)
■ Two models of IPC

● Shared memory
● Message passing

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

■ Processes can execute concurrently
● May be interrupted at any time, partially completing execution

■ Concurrent access to shared data may result in data
inconsistency

■ Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrent Access to Shared Data

§ Suppose that two processes A and B have access to
a shared variable “Balance”.

PROCESS A:
Balance = Balance - 100

PROCESS B:
Balance = Balance - 200

§ Further, assume that Process A and Process B are
executing concurrently in a time-shared,
multiprogrammed system.

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrent Access to Shared Data

§ The statement “ Balance = Balance – 100” is
implemented by several machine level instructions
such as:
A1. LOAD R1, BALANCE // load Balance from memory

into Register 1 (R1)
A2. SUB R1, 100 // Subtract 100 from R1
A3. STORE BALANCE, R1 // Store R1’s contents backto

the memory location of Balance.
§ Similarly, “Balance = Balance – 200” can be

implemented by the following:
B1. LOAD R1, BALANCE
B2. SUB R1, 200
B3. STORE BALANCE, R1

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Conditions

§ Scenario 1:
A1. LOAD R1, BALANCE
A2. SUB R1, 100
A3. STORE BALANCE, R1

Context Switch!
B1. LOAD R1, BALANCE
B2. SUB R1, 200
B3. STORE BALANCE, R1

§ Balance is decreased
by 300!

§ Observe: In a time-shared system the exact instruction
executionordercannot be predicted!

§ Scenario 2:
A1. LOAD R1, BALANCE
A2. SUB R1, 100

Context Switch!
B1. LOAD R1, BALANCE
B2. SUB R1, 200
B3. STORE BALANCE, R1

Context Switch!
A3. STORE BALANCE, R1

§ Balance is decreased
by 100!

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition
■ We would arrive at this incorrect state because we allowed both

processes to manipulate the variable BALANCE concurrently.
■ This situation is called a race condition.
■ To guard against the race condition above, we need to ensure that

only one process at a time can be manipulating the variable
BALANCE .

■ Situations such as the one just described occur frequently in
Applications and operating systems as different parts of the
system manipulate shared resources.

■ In multicore systems, an increased emphasis on developing
multithreaded applications. In such applications, several threads—
which are quite possibly sharing data—are running in parallel on
different processing cores.

■ we require that the processes be synchronized in some way.

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

■ Consider system of n processes {p0, p1, … pn-1}
■ Each process has critical section segment of code:

● Process may be changing Shared (items) like: common
variables, updating table, writing file, etc

● When one process in critical section, no other may be in
its critical section

■ Critical section problem is to design protocol to solve this.
■ Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

■ General structure of process Pi

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

while (turn == j);

critical section

turn = j;

remainder section

} while (true);

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress:
● No process running outside its critical section may block any

process from entering its Critical section.
● the selection of the processes that will enter the critical section next

cannot be postponed indefinitely.
3. Bounded Waiting - A bound (limit) must exist on the number of times

that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutual Exclusion

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-
preemptive
● Preemptive – allows preemption of process when running

in kernel mode
● Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields (gives up) CPU
4Essentially free of race conditions in kernel mode

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

■ Good algorithmic description of solving the problem.
■ Two process solution.
■ Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted.
■ The two processes share two variables:

● int turn;

● Boolean flag[2]

■ The variable turn indicates whose turn it is to enter the critical
section

■ The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {
flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

■ Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

Pi enters CS only if:
either flag[j] = false or turn = i

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met: Pi will enter the critical section

(progress) after at most one entry by Pj.

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

■ Many systems provide hardware support for implementing the
critical section code.

■ All solutions below based on idea of locking
● Protecting critical regions via locks

■ Uniprocessors – could disable interrupts
● Currently running code would execute without preemption
● Generally too inefficient on multiprocessor systems

4Operating systems using this are not broadly scalable.
■ Modern machines provide special atomic hardware instructions

4Atomic = non-interruptible
● Either test memory word and set value
● Or swap contents of two memory words

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Entering and leaving a critical region using
the TSL instruction

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutual Exclusion using test_and_set()

■ Shared Boolean variable lock, initialized to FALSE
■ Solution:

do {
while (test_and_set(&lock)); /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:
int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable “value” the value of the passed parameter “new_value”

but only if “value” ==“expected”. That is, the swap takes place only
under this condition.

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Entering and leaving a critical region using
the XCHG instruction

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutual Exclusion using compare_and_swap

■ Shared integer “lock” initialized to 0;
■ Solution:

do {
while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

■ Previous solutions are complicated and generally
inaccessible to application programmers.

■ OS designers build software tools to solve critical section
problem.

■ Simplest is mutex lock. (mutex is from Mutual exclusion)
■ Protect a critical section by first acquire() a lock then

release() the lock
● Boolean variable indicating if lock is available or not

■ Calls to acquire() and release() must be atomic
● Usually implemented via hardware atomic instructions

■ But has a main disadvantage (busy waiting).
■ This lock therefore called a spinlock, because the process

“spins” while waiting for the lock to become available.

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

■ acquire() {
while (!available); /* busy wait */

available = false;

}

■ release() {

available = true;

}

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Some of the Pthreads calls relating to
mutexes

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of mutex lock and mutex
unlock

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

■ Synchronization tool that provides more sophisticated ways (than
Mutex locks) for processes to synchronize their activities.

■ Semaphore S – integer variable
■ Can only be accessed via two indivisible (atomic) operations

● wait() and signal()
■ Each process that wishes to use a resource performs a wait() operation

on the semaphore, thus decrementing the count.
■ When a process releases a resource, it performs a signal() operation on

the semaphore, thus incrementing the count.

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

■ Definition of the wait() operation:

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

■ Definition of the signal() operation:
signal(S) {

S++;

}

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage
■ Counting semaphore – integer value can range over an

unrestricted domain
■ Binary semaphore – integer value can range only between 0 and 1.

● Same as a mutex lock
■ Can solve various synchronization problems
■ Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

■ Can implement a counting semaphore S as a binary semaphore

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

■ Must guarantee that no two processes can execute the wait()
and signal() on the same semaphore at the same time

■ Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
● Could now have busy waiting in critical section

implementation
4But implementation code is short
4Little busy waiting if critical section rarely occupied

■ Note that applications may spend lots of time in critical sections
and therefore this is not a good solution

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

■ With each semaphore there is an associated waiting
queue

■ Each entry in a waiting queue has two data items:
● value (of type integer)
● pointer to next record in the list

■ Two operations:
● block – place the process invoking the operation on the

appropriate waiting queue
● wakeup – remove one of processes in the waiting

queue and place it in the ready queue
● These two operations are provided by the operating system

as basic system calls.

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Definition with no Busy waiting

■ typedef struct{

int value;

struct process *list;

} semaphore;

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {
add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}

}

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

■ Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

■ Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

■ Starvation – indefinite blocking
● A process may never be removed from the semaphore queue in

which it is suspended
■ Priority Inversion – Scheduling problem when lower-priority

process holds a lock needed by higher-priority process
● Solved via priority-inheritance protocol

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Inversion

■ Priority Inversion – Scheduling problem when lower-priority
process holds a lock needed by higher-priority process

■ Solved via priority-inheritance protocol:
● all processes that are accessing resources needed by a higher-

priority process inherit the higher priority until they are finished
with the resources.

● When they are finished, their priorities revert to their original
values.

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

■ Classical problems used to test newly-proposed synchronization
schemes
● Bounded-Buffer Problem
● Readers and Writers Problem
● Dining-Philosophers Problem

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

■ Producer produces and stores in buffer, Consumer consumes from
buffer.

■ Trouble when – Producer produces, but buffer is full – Consumer
consumes, but buffer is empty.

■ Solution with Semaphore: both Consumer and Producer share
the following Data Structure:

■ int n, indicates n buffers, each can hold one item
■ Semaphore mutex initialized to the value 1

● provides mutual exclusion for accesses to the buffer pool.
■ Semaphore full initialized to the value 0

● count the number of full buffers
■ Semaphore empty initialized to the value n

● count the number of empty buffers

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

■ The structure of the producer process:

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

■ The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

■ Suppose that a database is to be shared among several
concurrent processes.

■ Some of these processes may want only to read the database.
■ Others may want to update (that is, to read and write) the

database.
■ We distinguish between these two types of processes by

referring to the former as readers and to the latter as writers.
■ No problem with only Reading.
■ We require that the writers have exclusive access to the shared

database while writing to the database.

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

■ Problem – allow multiple readers to read at the same time
● Only one single writer can access the shared data at the

same time
■ Several variations of how readers and writers are considered –

all involve some form of priorities

■ The simplest one, referred to as the first readers–writers
problem:

● no reader be kept waiting unless a writer has already
obtained permission to use the shared object.

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

the First Readers-Writers Problem

■ Shared Data:
● Semaphore rw_mutex initialized to 1

4mutual exclusion semaphore for the writers.

● Semaphore mutex initialized to 1

4used to ensure mutual exclusion when the variable read_count
is updated.

● Integer read_count initialized to 0

4 keeps track of how many processes are currently reading the object.

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The First Readers-Writers Problem (Cont.)

■ The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

} while (true);

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The First Readers-Writers Problem (Cont.)

■ The structure of a reader process
do {

wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read_count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem Variations

■ First variation – no reader kept waiting unless writer
has permission to use shared object.

■ Second variation – once writer is ready, it performs the
write ASAP.
● In other words, if a writer is waiting to access the

object, no new readers may start reading.
■ Both may have starvation leading to even more

variations
■ Problem is solved on some systems by kernel providing

reader-writer locks

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

■ Philosophers spend their lives alternating thinking and eating
■ Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
● Need both to eat, then release both when done

■ In the case of 5 philosophers
● Shared data

4Bowl of rice (data set)
4Semaphore chopstick [5] initialized to 1

5.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

■ The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopstick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

■ What is the problem with this algorithm?

5.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

■ Deadlock handling
● Allow at most 4 philosophers to be sitting

simultaneously at the table.
● Allow a philosopher to pick up the forks only if both

are available (picking must be done in a critical
section.

● Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher
picks up first the right chopstick and then the left
chopstick.

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores
■ Although semaphores provide a convenient and effective mechanism for

process synchronization:
● using them incorrectly can result in timing errors that are difficult to detect.

■ Incorrect use of semaphore operations, a Process change order:

● signal (mutex) /Critical section/ wait (mutex)
4 In this situation, several processes maybe executing in their critical

sections simultaneously, violating the mutual-exclusion requirement.

● wait (mutex) /Critical section/ wait (mutex)
4 In this case, a deadlock will occur.

● Omitting of wait (mutex) or signal (mutex) (or both)
4 In this case, either mutual exclusion is violated or a deadlock will occur.

■ starvation is possible.

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors
■ To deal with such semaphore errors, researchers have developed

high-level language Constructs.
■ recall: An abstract data type—or ADT—encapsulates data with a set

of functions to operate on that data that are independent of any
specific implementation of the ADT.

■ A monitor type is an ADT that includes a set of programmer defined
operations that are provided with mutual exclusion within the
monitor.

■ The monitor type also declares the variables whose values define the
state of an instance of that type, along with the bodies of functions
that operate on those variables.

■ a function defined within a monitor can access only those variables
declared locally within the monitor and its formal parameters.

■ The local variables of a monitor can be accessed by only the local
functions.

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors
■ Only one process may be active within the monitor at a time.
■ But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

adding Condition Variables to Monitor

■ condition x, y;

■ Two operations are allowed on a condition variable:
● x.wait() – a process that invokes the operation is

suspended until another process invokes x.signal()

● x.signal() – resumes exactly one suspended process.
4 If no x.wait() on the variable, then it has no effect on the

variable

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

■ If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?
● Both Q and P cannot execute in parallel. If Q is resumed, then P

must wait.
■ Options include:

● Signal and wait – P waits until Q either leaves the monitor or it
waits for another condition

● Signal and continue – Q waits until P either leaves the monitor or it
waits for another condition. since P was already executing in the
monitor

● Both have pros and cons – language implementer can decide
● Monitors implemented in Concurrent Pascal compromise:

4P executing signal immediately leaves the monitor, Q is
resumed

■ Monitor is Implemented in other languages including C#, Java

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum {THINKING, HUNGRY, EATING} state[5];
condition self[5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;

self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

5.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

■ Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

■ No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation Using Semaphores

■ Variables:

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

■ Each procedure F will be replaced by:

wait(mutex);
…

body of F;
…

if (next_count > 0)
signal(next)

else
signal(mutex);

■ Mutual exclusion within a monitor is ensured

5.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

■ For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

■ The operation x.wait() can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

5.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

■ The operation x.signal() can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

5.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

■ If several processes queued on condition x, and x.signal()
executed, which should be resumed?

■ FCFS frequently not adequate
■ conditional-wait construct of the form x.wait(c)

● Where c is priority number
● Process with lowest number (highest priority) is

scheduled next

5.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

■ Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);
...

access the resurce;
...

R.release;

■ Where R is an instance of type ResourceAllocator

Single Resource allocation

5.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource
monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy = TRUE;
}

void release() {
busy = FALSE;
x.signal();

}
initialization code() {

busy = FALSE;
}

}

5.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Examples

■ Solaris
■ Windows
■ Linux
■ Pthreads

5.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Synchronization

■ Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

■ Uses adaptive mutexes for efficiency when protecting data from short
code segments
● Starts as a standard semaphore spin-lock
● If lock held, and by a thread running on another CPU, spins
● If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

■ Uses condition variables
■ Uses readers-writers locks when longer sections of code need

access to data
■ Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock
● Turnstiles are per-lock-holding-thread, not per-object

■ Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

5.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Synchronization

■ Uses interrupt masks to protect access to global resources on
uniprocessor systems

■ Uses spinlocks on multiprocessor systems
● Spinlocking-thread will never be preempted

■ Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers
● Events

4An event acts much like a condition variable
● Timers notify one or more thread when time expired
● Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

5.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Synchronization

■ Linux:
● Prior to kernel Version 2.6, disables interrupts to

implement short critical sections
● Version 2.6 and later, fully preemptive

■ Linux provides:
● Semaphores
● atomic integers
● spinlocks
● reader-writer versions of both

■ On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

5.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Synchronization

■ Pthreads API is OS-independent
■ It provides:

● mutex locks
● condition variable

■ Non-portable extensions include:
● read-write locks
● spinlocks

5.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Alternative Approaches

■ Transactional Memory

■ OpenMP

■ Functional Programming Languages

5.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

■ A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()
{

/* read/write memory */
}

Transactional Memory

5.77 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

■ OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)
{

#pragma omp critical
{

count += value
}

}

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

5.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

■ Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

■ Variables are treated as immutable and cannot change state
once they have been assigned a value.

■ There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming Languages

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 5

