
Real-Time Systems (Dr. Wassim Ahmad) 1

Real-Time Systems

Resource Access Control
Protocols

Real-Time Systems (Dr. Wassim Ahmad) 2

Assumptions

• Periodic tasks
• Task can have resource access
• Semaphore is used for mutual exclusion
• RMS scheduling

Real-Time Systems (Dr. Wassim Ahmad) 3

Background – Task State diagram

• Ready State: waiting in ready queue
• Running State: CPU executing the task
• Blocked: waiting in the semaphore

queue until the shared resource is free

• Semaphore types – mutex (binary
semaphore), counting semaphore

Real-Time Systems (Dr. Wassim Ahmad) 4

Task State Diagram

READY RUN

WAITING

Activate

scheduling

Preemption

Termination

Wait on
busy

resource

Signal
free

resource

Process/Task state diagram with resource constraints

Real-Time Systems (Dr. Wassim Ahmad) 5

Priority Inversion Problem

Priority inversion is an undesirable situation
in which a higher priority task gets blocked
(waits for CPU) for more time than that it is
supposed to, by lower priority tasks.

Example:
• Let T1 , T2 , and T3 be the three periodic tasks

with decreasing order of priorities.
• Let T1 and T3 share a resource “S”.

Real-Time Systems (Dr. Wassim Ahmad) 6

Priority Inversion -- Example
• T3 obtains a lock on the semaphore S and enters its

critical section to use a shared resource.

• T1 becomes ready to run and preempts T3. Then, T1
tries to enter its critical section by first trying to lock S.
But, S is already locked by T3 and hence T1 is
blocked.

• T2 becomes ready to run. Since only T2 and T3 are
ready to run, T2 preempts T3 while T3 is in its critical
section.

Ideally, one would prefer that the highest priority task
(T1) be blocked no longer than the time for T3 to
complete its critical section. However, the duration of
blocking is, in fact, unpredictable because task T2 got
executed in between.

Real-Time Systems (Dr. Wassim Ahmad) 7

Priority Inversion example

T1

T2

T3T3

0

T3 is the
only

active
task

Preempted by
higher priority

task T1

T1

Makes a
request for

resource S and
gets blocked

T3

Preempted by
higher priority

task T2

T2

T3

T3 completes

T1

Resource S is
available and T1

is scheduled
here

K1 K2
K3

T2 completes

L1

Total blocking time for task T1 = (K1+K2+K3) + (L1)

Highest
priority

Least
priority

Medium
priority

T1 and T3
share

resource
S

A higher
priority task
waits for a

lower priority
task

Real-Time Systems (Dr. Wassim Ahmad) 8

Priority Inheritance Protocol
Priority inheritance protocol solves the
problem of priority inversion.

Under this protocol, if a higher priority task TH
is blocked by a lower priority task TL, because
TL is currently executing critical section
needed by TH, TL temporarily inherits the
priority of TH.

When blocking ceases (i.e., TL exits the critical
section), TL resumes its original priority.

Unfortunately, priority inheritance may lead to
deadlock.

Real-Time Systems (Dr. Wassim Ahmad) 9

Priority Inheritance Protocol – Deadlock
Assume T2 > T1 (i.e., T2 has high priority)

Real-Time Systems (Dr. Wassim Ahmad) 10

Priority Ceiling Protocol
• Priority ceiling protocol solves the priority

inversion problem without getting into
deadlock.

• For each semaphore, a priority ceiling is
defined, whose value is the highest priority of
all the tasks that may lock it.

• When a task Ti attempts to execute one of its
critical sections, it will be suspended unless
its priority is higher than the priority ceiling of
all semaphores currently locked by tasks
other than Ti.

Real-Time Systems (Dr. Wassim Ahmad) 11

Priority Ceiling Protocol (Contd.)

• If task Ti is unable to enter its critical section
for this reason, the task that holds the lock on
the semaphore with the highest priority ceiling
is said to be blocking Ti and hence inherits
the priority of Ti.

• As long as a task Ti is not attempting to enter
one of its critical sections, it will preempt
every task that has a lower priority.

Real-Time Systems (Dr. Wassim Ahmad) 12

Priority Ceiling Protocol -- properties

• This protocol is the same as the priority
inheritance protocol, except that a task Ti can
also be blocked from entering a critical section
if any other task is currently holding a
semaphore whose priority ceiling is greater
than or equal to the priority of task Ti.

• Prevents mutual deadlock among tasks
• A task can be blocked by lower priority tasks

at most once

Real-Time Systems (Dr. Wassim Ahmad) 13

Priority Celiling Protocol - Example
• For the previous example, the priority ceiling

for both CS1 and CS2 is the priority of T2.

• From time t0 to t2, the operations are the same
as before.

• At time t3, T2 attempts to lock CS1, but is
blocked since CS2 (which has been locked by
T1) has a priority ceiling equal to the priority of
T2.

• Thus T1 inherits the priority of T2 and proceeds
to completion, thereby preventing deadlock
situation.

Real-Time Systems (Dr. Wassim Ahmad) 14

Priority Inversion - Real-world Example
• Mars Pathfinder mission (July 4, 1997)
• VxWorks (real-time OS), preemptive priority

scheduling of threads (e.g., RMS)

• Priority inversion involving three threads:
– Information bus task (T1), meteorological data

gathering task (T3), communication task (T2).
Priority order: T1>T2>T3

– Shared resource: information bus (used mutex)

• Same situation as described in the previous example
had occurred

• Findings: Priority ceiling protocol was found to be
disabled initially, then it was enabled online and the
problem was corrected

Real-Time Systems (Dr. Wassim Ahmad) 15

Priority Ceiling Emulation

• Once a task locks a semaphore, its priority is
immediately raised to the level of the priority
ceiling of the semaphore.

• Deadlock avoidance and block at-most-once
result of priority ceiling protocol still holds.

• Restriction: A task cannot suspend its
execution within the critical section.

Real-Time Systems (Dr. Wassim Ahmad) 16

Modeling Blocking Time and Earlier Deadline

• Blocking time (Bi) encountered by task Ti by
lower priority tasks can be modeled by
increasing Ti’s utilization by Bi/Pi.

• Earlier deadline (Di < Pi) can also be modeled
as blocking time for Ei = Pi – Di.

• Net increase in task Ti’s utilization is
(Bi + Ei) / Pi.

Real-Time Systems (Dr. Wassim Ahmad) 17

Modeling Blocking and Earlier Deadline (Cont.)

• Schedulability Check (sorted order T1 > T2 > … > Tn) -- sufficient,
but not necessary

• Completion time Test (Exact analysis)
– Earlier deadline (di < pi) case: same as DMS exact analysis
– Blocking time (Bi) case:

• Let Ci’ = Ci + Bi
• While calculating Wi(t) for task Ti, use Ci’ for task Ti and for all

other higher priority tasks Tj simply use Cj

)1/12(
)(

2

2

1

1,1, −≤
++

+++≤≤∀ ii
ip

iEiBiC

p

C

p

C
nii !

