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Definition

Mathematically defined, a polygon is a plane figure specified by aset of three
or more coordinate positions, called vertices, that are connected in sequence by
straight-line segments, called the edges or sides of the polygon. Further, in basic
geometry, it is required that the polygon edges have no common point other than
their endpoints. Thus, by definition, a polygon must have all its vertices within
a single plane and there can be no edge crossings. Examples of polygons include
triangles, rectangles, octagons, and decagons. Sometimes, any plane figure with
a closed-polyline boundary is alluded to as a polygon, and one with no crossing
edges is referred to as ¢ standard polygon or a simple polygon. In an effort to avoid
ambiguous object references, we will use the term “polygon” to refer only to those
planar shapes that have a closed-polyline boundary and no edge crossings.
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Polygon Classifications

An interior angle of a polygon is an angle inside the polygon boundary that is
formed by two adjacent edges. If all interior angles of a polygon are less than
or equal to 180°, the polygon is convex. An equivalent definition of a convex
polygon is that its interior lies completely lon one side of the infinite extension
line of any one of its edges. Also, if we select anv two points in the interior of a
convex polygon, the line segment joining the two points is also in the interior. A
polygon that is not convex s called a concave polygon . Figure 3-42 gives examples
of convex and concave polygons.

£

FIGURE 3-42 A convex
polygon (a), and a concave
polygon (b). > 180°

(a) (b)
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ldentifying Concave polygons

Interior angel test & boundary intersection

A concave polygon has at least one interior angle greater than 180°. Also, the
extension of some edges of a concave polygon will intersect other edges, and some
pair of interior points will produce a line segment that intersects the polygon
boundary. Therefore, we can use any one of these characteristics of a concave
polygon as a basis for constructing an identification algorithm.

Edge extension rule
 Another way to identify a concave polygon is to take a look at the polygon
vertex positions relative to the extension line of any edge. If some vertices are on
one side of the extension line and some vertices are on the other side, the polygon
is concave.
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Vector Cross products

If we set up a vector for each polygon edge, then we can use the cross prodauci
of adjacent edges to test for concavity. All such vector products will be of the same
sign (positive or negative) for a convex polygon. Therefore, if some cross products
yield a positive value and some a negative value, we have a concave polygon. Fig-
ure 3-43 illustrates the edge-vector, cross-product method for identifying concave

polygons.

2018-2019 Dr. Nabi Hamed



Mathematical Review

V=P-P

= (X2~ X1, Yo —W1) (A-8)
— (V,\'r Vw)

Vs <= ) "2

v
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»"11 | Xlz

FIGURE A-13 A two-dimensional vector V
defined in a Cartesian reference frame as the
difference of two point positions.

cross product of two vectors is a vector that is perpendicular to the plane of the
two vectors, and the magnitude of the cross-product vector is equal to the area of
the parallelogram formed by the two vectors.
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Vectors Cross product

We can also express the cross product in terms of vector components in a
specific reference frame. In a Cartesian-coordinate system, we calculate the com-
ponents of the cross product as

Vi x Vy = (VlyVZZ - VIZVZyr VizVax — Vix Vo, leVZy = VWVZ.\') (A~21)
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(E; X E,),>0
(E,; X E;),>0
(E; X Ey), <0
(E4 X Es),>0
(Es X Eg),>0

(E6 X El)z >0

FIGURE 3-43  Identifying
a concave polygon by
calculating cross products of
successive pairs of edge
vectors.



Exercise

* Check if the polygon is convex or not using vector cross product rule.
The vertices coordinates are:

VA V1(1l 1); V2(3l 1) ; V3(l|'l 2);
s : V4(2.5,5), V5(2.5,6); V6(1,6)

E1=V2-Vi=[(x2-x1),(y2-y1)]=(2,0)
E2=V3-V2=(1,1)
E3=V4-V3=(-1.5,3)
E4=V5-V4=(0,1)
E5=V6-V5=(-1.5,0)
E6=V1-V6=(0,-5)
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Ei1XE2=EixE2y-E2xE1y=2-0=2

E2XE3=E2xE3y-E3xE2y=3+1.5=4.5
E3XE4=E3xE4y-E4xE3y=-1.5
E4XE5=E4xXEgy-EcxE4y=1.5
E5XE6=E5xE6y-E6XELy=7.5
E6XE1-E6xE1y-E1xEby=10
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Splitting Concave Polygons

Once we have identified a concave polygon, we can split it into a set of convex
polygons. This can be accomplished using edge vectors and edge cross products.
Or, we can use vertex positions relative to an edge extension line to determine
which vertices are on one side of this line and which are on the other. For the
following algorithms, we assume that all polygons are in the xy plane.
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Exercise

SNV EERN Vector Method for Splitting Concave Polygons

E, Figure 3-44 shows a concave polygon with six edges. Edge vectors for this
polygon can be expressed as

Ei;=(1,00) Ba= (1,1,0)
Es=(1,-1,0) Es= (0,2,0)
Es = (—=3,0,0) Es = (0, -2,0)
where the z component is 0, since all edges are in the xy plane. The cross

product E; x Ej for two successive edge vectors is a vector perpendicular to
the xy planc with z component equal to E jxEky — ExxE jy:

FIGURE 3-44  Splitting a E; x E; =(0,0,1) E; x E3 = (0,0, —-2)
concave pol_vgnn using the Es x E4 = (0,0 2) E.-; X Ef', - (() 0 6)
vector method. ke =8 o

Es x E¢ = (0,0, 6) Es x Ey = (0,0, 2)

Since the cross product E; x E; has a negative z component, we split the
polygon along the line of vector E;. The line equation for this edge has a
slope of 1 and a y intercept of —1. We then determine the intersection of this
line with the other polygon edges to split the polygon into two pieces. No
other edge cross products are negative, so the two new polygons are both
convex, i
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Inside Outside Tests

Various graphics processes often need to identify interior regions of objects. Iden-
tifying the interior of a simple object, such as a convex polygon, a circle, or a
sphere, is generally a straightforward process. But sometimes we must deal with
more complex objects. For example, we may want to specify a complex fill region
with intersecting edges, as in Fig. 3-46. For such shapes, it is not always clear
which regions of the xy plane we should call “interior” and which regions we
should designate as “exterior” to the object boundaries. o

2018-2019 Dr. Nabi Hamed

13



Odd-Even rule

We apply the odd-even rule, also called the odd-parity rule or the even-odd
rule, by first conceptually drawing a line from any position P to a distant point
outside the coordinate extents of the closed polyline. Then we count the number of
line-segment crossings along this line. If the number of segments crossed by this
line is odd, then P is considered to be an interior point. Otherwise, P is an exterior
point. To obtain an accurate count of the segment crossings, we must be sure
that the line path we choose does not intersect any line-segment endpoints. Fig-
ure 3-46(a) shows the interior and exterior regions obtained using the odd-even
rule for a self-intersecting closed polyline.

exterior

interior

Odd-Even Rule
(a)
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General Scan-Line Polygon Fill Algorithm

Figure 4-20 illustrates the basic scan-line procedure for a solid-color fill of a
polygon. For each scan line that crosses the polygon, the edge intersections are
sorted from left to right, and then the pixel positions between, and including,
each intersection pair are set to the specified fill color. In the example of Fig. 4-20,
the four pixel intersection positions with the polygon boundaries define two
stretches of interior pixels. Thus, the fill color is applied to the five pixels from
x = 10 to x = 14 and to the seven pixels from x = 18 to x = 24. If a pattern fill
is to be applied to the polygon, then the color for each pixel along a scan line is

determined from its overlap position with the fill pattern.
y

—
10 14 18 24

FIGURE 4-20 Interior pixels along a scan line
2018-2019 passing through a polygon fill area.
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However, the scan-line fill algorithm for a polygon is not quite as simple as
Fig. 4-20 might suggest. Whenever a scan line passes through a vertex, it intersects
two polygon edges at that point. In some cases, this can result in an odd number of
boundary intersections for a scan line. Figure 4-21 shows two scan lines that cross
a polygon fill area and intersect a vertex. Scan line i’ intersects an even number
of edges, and the two pairs of intersection points along this scan line correctly
identify the interior pixel spans. But scan line y intersects five polygon edges. To

identify the interior pixels for scan line y, we must count the vertex intersection
as only one point. Thus, as we process scan lines, we need to distinguish between
these cases.
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1 2 1
/ / Scan Line y

1 2 1 1

& 4

FIGURE 4-21 Intersection points along scan lines that
intersect polygon vertices. Scan line y generates an odd
number of intersections, but scan line i’ generates an even
number of intersections that can be paired to identify correctly
the interior pixel spans.
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We can identify these vertices by tracing around the polygon boundary in
either clockwise or counterclockwise order and observing the relative changes in
vertex y coordinates as we move from one edge to the next. If the three endpoint
y values of two consecutive edges monotonically increase or decrease, we need
to count the shared (middle) vertex as a single intersection point for the scan
line passing through that vertex. Otherwise, the shared vertex represents a local
extremum (minimum or maximum) on the polygon boundary, and the two edge
intersections with the scan line passing through that vertex can be added to the
intersection list.
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Plane Equation

Each polygon in a scene is contained within a plane of infinite extent. The
general equation of a plane is

Ax+By+Cz+D=0 (3-59)

where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D (called
plane parameters) are constants describing the spatial properties of the plane. We
can obtain the values of A, B, C, and D by solving a set of three plane equa-
tions using the coordinate values for three noncollinear points in the plane. For
this purpose, we can select three successive convex-polygon vertices, (x1, 11, Z1),
(x2, 12, 22), and (x3, 13, 23), in a counterclockwise order and solve the following set
of simultaneous linear plane equations for the ratios A/D, B/D, and C/D:

(A/D)x¢ + (B/D)y¢ + (C/Dyzx = =1, k=1,2,3 (3-60)

How to find constants A,B,C and D for the plane equation containing a
polygon ?
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Cramer’s rule, as

1 i 2z X1 1 21
A=|1 2 2 ' X 1 )
1 Y3 Z3 X3 1 Z3
(3-61)
x1 yo 1 X1 Wz
C=[(x p 1 D=—|x 1w 2
x3 iz 1 X3 Y3 Z3

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A=y (22 — 23) + 12(23 — 21) + ys3(z1 — 22)
B = z1(x2 — x3) + 22(x3 — x1) + 23(x1 — X2)
C=x1(—ys) + % —y) +x3(1 — 1)
D = —x1(pz3 — 1322) — X2(321 — 1123) — x3(1122 — Yo21)

(3-62)
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Front and back polygon faces

Ax+By+Cz+D#0

Thus we can identify the point as either behind or in front of a polygon surface
contained within that plane according to the sign (negative or positive) of Ax +
By+Cz+ D:

if Ax+By+Cz+ D <0, the point (x, y, z) is behind the plane
if Ax+By+Cz+D >0, the point (x, y, z) is in front of the plane
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Normal Vector

Orientation of a polygon surface in space can be described with the normal
vector for the plane containing that polygon, as shown in Fig. 3-53. This sur-
face normal vector is perpendicular to the plane and has Cartesian components
(A, B, C), where parameters A, B, and C are the plane coefficients calculated in
Egs. 3-62. The normal vector points in a direction from inside the plane to the
outside; that is, from the back face of the polygon to the front face.
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The elements of a normal vector can also be obtained using a vector cross-
product calculation. Assuming we have a convex-polygon surface facet and a
right-handed Cartesian system, we again select any three vertex positions, Vi, Vy,
and V3, taken in counterclockwise order when viewing from outside the object
toward the inside. Forming two vectors, one from V; to V; and the second from
V; to V3, we calculate N as the vector cross product:

N=(Vy,—-V;) x(V3—-Vy) (3-63)

2018-2019 Dr. Nabi Hamed 23



N=(A, B, C)

Z

FIGURE 3-53 The
normal vector N for a plane
described with the equation
Ax+ By+Cz+D=0is
perpendicular to the plane
and has Cartesian
components (A, B, C).
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Exercise

* What is The normal vector
componenets for the shaded

surface? |
|
e Isthe point (1,1,0) in the shaded P <
plane? (3,3,8); (5,1,1) P

* What is surface equation for the
polygon ?(z,1,1); (2,0,0); (0,0,1) ?

v' A=-1,B=1,C=-1,D=1

 What are the normal vector
components ?
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End Of Presentation
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