Matrix Representation and

Homogeneous Coordinates

We have seen in Section 5-1 that each of the three basic two-dimensional
transformations (translation, rotation, and scaling) can be expressed in the gen-
eral matrix form

P = M;-P+M, (5-15)

with coordinate positions P and P’ represented as column vectors. Matrix M; is
a 2 by 2 array containing multiplicative factors, and M; is a two-element col-
umn matrix containing translational terms. For translation, M; is the identity
matrix. For rotation or scaling, M; contains the translational terms associated
with the pivot point or scaling fixed point. To produce a sequence of transforma-
tions with these equations, such as scaling followed by rotation then translation,
we could calculate the transformed coordinates one step at a time. First, coordi-
nate positions are scaled, then these scaled coordinates are rotated, and finally
the rotated coordinates are translated. A more efficient approach, however, is to
combine the transformations so that the final coordinate positions are obtained
directly from the initial coordinates, without calculating intermediate coordinate
values. We can do this by reformulating Eq. 5-15 to eliminate the matrix addition

operation.
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Homogeneous Coordinates

Multiplicative and translational terms for a two-dimensional geometric trans-
formation can be combined into a single matrix if we expand the representa-
tions to 3 by 3 matrices. Then we can use the third column of a transforma-
tion matrix for the translation terms, and all transformation equations can be
expressed as matrix multiplications. But to do so, we also need to expand the ma-
trix representation for a two-dimensional coordinate position to a three-element
column matrix. A standard technique for accomplishing this is to expand each
two-dimensional coordinate-position representation (x, y) to a three-element rep-
resentation (x;, yu, h), called homogeneous coordinates, where the homogeneous
parameter /1 is a nonzero value such that

_% W

X = 7 Y » (56-16)
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Therefore, a general two-dimensional homogeneous coordinate representation
could alsobe writtenas (h-x,h-y, h). For geometric transformations, we can choose
the homogeneous parameter / to be any nonzero value. Thus, there are an infinite
number of equivalent homogeneous representations for each coordinate point
(x, y). A convenient choice is simply to set 1 = 1. Each two-dimensional position
is then represented with homogeneous coordinates (x, y, 1). Other values for
parameter /1 are needed, for example, in matrix formulations of three-dimensional
viewing transformations.
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Two-Dimensional Translation Matrix

Using a homogeneous-coordinate approach, we can represent the equations for a
two-dimensional translation of a coordinate position using the following matrix
multiplication.

X! 1 O X
yi=1(01 t]|. |y (5-17)
1 00 1 1

This translation operation can be written in the abbreviated form
P'=T(, t,) P (5-18)

with T(t, t,) as the 3 by 3 translation matrix in Eq. 5-17. In situations where there
is no ambiguity about the translation parameters, we can simply represent the
translation matrix as T.
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Tow-dimensional Rotation matrix

Similarly, two-dimensional rotation transformation equations about the coordi-
nate origin can be expressed in the matrix form

x cos® —sinfd 0 X
Y| = |sinf cos@® O .|y (5-19)
1 0 0 1 1
or as
P'=R(@)-P (5-20)

The rotation transformation operator R(0) is the 3 by 3 matrix in Eq. 5-19 with
rotation parameter 6. We can also write this rotation matrix simply as R.
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Two-Dimensional Scaling Matrix

Finally, a scaling transformation relative to the coordinate origin can now be
expressed as the matrix multiplication

x' s, 0 O X
y|=10 sy 0 y (5-21)
1 0 0 1 1
or
P' = S(sy, sy) - P (5-22)

The scaling operator S(sy, sy) is the 3 by 3 matrix in Eq. 5-21 with parameters s,
and s,. And, in most cases, we can represent the scaling matrix simply as S.
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Inverse Transformations

Inverse Translation

For translation, we obtain the inverse matrix by negating the translation distances.
Thus, if we have two-dimensional translation distances t, and ty, the inverse
translation matrix is

1 0 —t
Tt = |0 1 =8 (5-23)
00 1

This produces a translation in the opposite direction, and the product of a trans-
lation matrix and its inverse produces the identity matrix.
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Inverse rotation

An inverse rotation is accomplished by replacing the rotation angle by its
negative. For example, a two-dimensional rotation through an angle 6 about the
coordinate origin has the inverse transformation matrix

cosf® sinfd 0O
R'!=|—sinf cosfd 0 (5-24)
0 0 1

Negative values for rotation angles generate rotations in a clockwise direction,
so the identity matrix is produced when any rotation matrix is multiplied by
its inverse. Since only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows
and columns. That is, we can calculate the inverse of any rotation matrix R by
evaluating its transpose (R™! = RT).
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Inverse scaling

We form the inverse matrix for any scaling transformation by replacing the
scaling parameters with their reciprocals. For two-dimensional scaling with pa-
rameters sy and s, applied relative to the coordinate origin, the inverse transfor-
mation matrix is

. -
— 0 0
Sx
s'=|9 L (5-25)
Sy
0 0 1)

The inverse matrix generates an opposite scaling transformation, so the multipli-
cation of any scaling matrix with its inverse produces the identity matrix.

2018-2019 Dr. Nabil Hemed



Two Dimensional composite

transformations

Using matrix representations, we can set up a sequence of transformations as a
composite transformation matrix by calculating the product of the individual
transformations. Forming products of transformation matrices is often referred
to as a concatenation, or composition, of matrices. Since a coordinate position is
represented with a homogeneous column matrix, we must premultiply the col-
umn matrix by the matrices representing any transformation sequence. And, since
many positions in a scene are typically transformed by the same sequence, it is
more efficient to first multiply the transformation matrices to form a single com-
posite matrix. Thus, if we want to apply two transformations to point position P,
the transformed location would be calculated as

P=M, M;-P
—M-P (5-26)

The coordinate position is transformed using the composite matrix M, rather than
applying the individual transformations M; and then M.
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Composite Two- dimensional

Translations

If two successive translation vectors (t1y, t1y) and (f, f2y) are applied to a two-
dimensional coordinate position P, the final transformed location P’ is calcu-
lated as

P’ = T(ky, t2y) AT (b, t'ly) - P}
= {T(tax, tay) - T(t1x, tiy)} - P (5-27)

where P and P’ are represented as three-element, homogeneous-coordinate col-
umn vectors. We can verify this result by calculating the matrix product for the
two associative groupings. Also, the composite transformation matrix for this
sequence of translations is

0 1 fy|-|0 1 ty|=|0 1 hy+ty (5-28)
0 0 1 0 0 1 0 0O 1

or
T(thz t2y) ' T(t]x/ t]y) — T(t'lx ~+ tzx, t'[y -+ tzy) (5-29)
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Composite Two Dimensional

Rotations

Two successive rotations applied to a point P produce the transformed position

P’ = R(6,) - {R(61) - P}
= {R(6,) - R(61)} - P (5-30)

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(6,) - R(61) = R(61 + 62) (5-31)

so that the final rotated coordinates of a point can be calculated with the composite
rotation matrix as

P = R#; +65)-P (5-32)

2018-2019 Dr. Nabil Hemed 12



Composite two-dimensional scaling

Concatenating transformation matrices for two successive scaling operations in
two dimensions produces the following composite scaling matrix.

52y 0 0 S1x 0 0 S1x * S2x 0 0
0 Szy 0f - 0 Sly 0] = 0 S]y . 52_1/ 0 (5-33)
0 0 1 0 0 1 0 0 1
or
S(SZx/ 523/) } S(S'lxz Sly) = S(Sl.\' ' 52x, S1y 52y) (5-34)

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succession,
the final size would be nine times that of the original.

2018-2019 Dr. Nabil Hemed
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General 2-dimensional pivot-point rotation

(a)
Original Position
of Object and
Pivot Point
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General Two-Dimensional Pivot-Point Rotation

When a graphics package provides only a rotate function with respect to the coor-
dinate origin, we can generate a two-dimensional rotation about any other pivot
point (x;, y) by performing the following sequence of translate-rotate-translate
operations.

(1) Translate the object so that the pivot-point position is moved to the coordinate
origin.

(2) Rotate the object about the coordinate origin.

(3) Translate the object so that the pivot point is returned to its original position.

This transformation sequence is illustrated in Fig. 5-9. The composite trans-
formation matrix for this sequence is obtained with the concatenation

1 0 2% cosd —sinf 0 1 0 —x
0 1 y|.[sinf cosé@ Of.|0 1 -y

0 0 1 0 0 1] |10 0 1

cosf —sinf x(1 —cos@) + y, sinf
= [sinf cos@® (1 —cosf)— x,sinéb (5-35)
0 0 1
which can be expressed in the form
T(x, ¥)-R@) - T(—x,, —1) = R(x, ¥, 9) (5-36)

2018-2019 Dr. Nabil Hemed
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General Two-dimensional Fixed point Scaling
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General Two-dimensional Fixed point Scaling

Figure 5-10 illustrates a transformation sequence to produce a two-dimensional
scaling with respect to a selected fixed position (xf, ys), when we have a function
that can scale relative to the coordinate origin only. This sequence is

(1) Translate the object so that the fixed point coincides with the coordinate origin.
(2) Scale the object with respect to the coordinate origin.

(3) Use the inverse of the translation in step (1) to return the object to its original
position.

Concatenating the matrices for these three operations produces the required
scaling matrix:

1 0 xy sy 0 0 1 O =xp sy 0 xp(l—sy)
0 1 ye|-10 sy 0.0 1 =yf|= 0 sy yr(l—sy) (5-37)
0 0 1 0 0 1 0 0 1 0 0 1

or

T(xy, yf) - S(x, 8y) - T(=xf, —yf) = S(Xs, Yf, Sx, 8y) (5-38)
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Matrix Concatenation Properties

Multiplication of matrices is associative. For any three matrices, M, M, and M3,

the matrix product M3z - M - M; can be performed by first multiplying Ms and
M; or by first multiplying M, and M;:

M; -M; -M;=(M;3-Mp) - M; =M (M; M) (5-40)

'l?herefore, depending upon the order in which the transformations are speci-
fied, we can construct a composite matrix either by multiplying from left-to-right

(premultiplying) or by multiplying from right-to-left (postmultiplying). Some
graphics packages require that transformations be specified in the order in which
they are to be applied. In that case, we would first invoke transformation Mj,
then M, then M3. As each successive transformation routine is called, its matrix
is concatenated on the left of the previous matrix product. Other graphics systems,
however, postmultiply matrices, so that this transformation sequence would have
to be invoked in the reverse order: the last transformation invoked (which is M;
for this example) is the first to be applied, and the first transformation that is
called (M3 in this case) is the last to be applied.

2018-2019 Dr. Nabil Hemed 18



Transformation products, on the other hand,|may not be commutative.

The

matrix product M - M is not equal to M; - My, in general. This means that if we
want to translate and rotate an object, we must be careful about the order in which

the composite matrix is evaluated (Fig. 5-13). For some special cases—such

as a

sequence of transformations that are all of the same kind—the multiplication of
transformation matrices is commutative. As an example, two successive rotations
could be performed in either order and the final position would be the same. This

commutative property holds also for two successive translations or two succes

sive

scalings. Another commutative pair of operations is rotation and uniform scaling

(x = sy).

I Final /\3\ Final

Position Position

(a) (b)

FIGURE 5-13  Reversing the order in which a sequence of transformations is
performed may affect the transformed position of an object. In (a), an object is first
translated in the x direction, then rotated counterclockwise through an angle of 45°. In
(b), the object is first rotated 45° counterclockwise, then translated in the x direction.
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FIGURE 5-16 Reflection
of an object about the x axis.
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A transformation that produces a mirror image of an object is called a reflection.
For a two-dimensional reflection, this image is generated relative to an axis of
reflection by rotating the object 180° about the reflection axis. We can choose
an axis of reflection in the xy plane or perpendicular to the xy plane. When the
reflection axis is a line in the xy plane, the rotation path about this axis is in a
plane perpendicular to the xy plane. For reflection axes that are perpendicular to
the xy plane, the rotation path is in the xy plane. Following are examples of some
common reflections.

Reflection about the line y = 0 (the x axis) is accomplished with the transfor-
mation matrix

1 0 0]
0 -1 0 (5-52)
0 0 1

This transformation retains x values, but “flips” the y values of coordinate posi-
tions. The resulting orientation of an object after it has been reflected about the
x axis is shown in Fig. 5-16. To envision the rotation transformation path for this
reflection, we can think of the flat object moving out of the xy plane and rotating
180° through three-dimensional space about the x axis and back into the xy plane
on the other side of the x axis.
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A reflection about the line x = 0 (the y axis) flips x coordinates while keeping
y coordinates the same. The matrix for this transformation is

-1 0 0
0 1 0 (5-53)
0 01

Figure 5-17 illustrates the change in position of an object that has been reflected
about the line x = 0. The equivalent rotation in this case is 180° through three-

dimensional space about the y axis. y
Original Reflected
Position Position
2 i~ -

FIGURE 5-17 Reflection
of an object about the y axis.
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We flip both the x and y coordinates of a point by reflecting relative to an axis
that is perpendicular to the xy plane and that passes through the coordinate origin.
This reflection is sometimes referred to as a reflection relative to the coordinate
origin, and it is equivalent to reflecting with respect to both coordinate axes. The
matrix representation for this reflection is

-1 0 0
0 -1 0 (56-54)
0 0 1

An example of reflection about the origin is shown in Fig. 5-18. The reflection
matrix 5-54 is the same as the rotation matrix R(9) with & = 180°. We are simply
rotating the object in the xy plane half a revolution about the origin.
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FIGURE 5-18  Reflection of
an object relative to the
coordinate origin. This trans-
formation can be accomplished
with a rotation in the xy plane
about the coordinate origin.
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FIGURE 5-19  Reflection of an object relative to an axis
perpendicular to the xy plane and passing through point
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FIGURE 5-20 Reflection
of an object with respect to
the line y = x.
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To obtain a transformation matrix for reflection about the diagonal y = —x,
we could concatenate matrices for the transformation sequence: (1) clockwise

rotation by 45°, (2) reflection about the y axis, and (3) counterclockwise rotation
by 45°. The resulting transformation matrix is

0 -1 0
=1 0 0 (5-56)
0 0 1
2"y

& |Reflected

l\ >, | Position

=N

1 3

2= ——— 1 FIGURE 5-22  Reflection
R ; with respect to the line
> ’ Y =—X.

Original > ;
Position M3
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FIGURE 5-23 A unit square (a) is converted to a
parallelogram (b) using the x-direction shear matrix 5-57

with shy = 2.
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A transformation that distorts the shape of an object such that the trans-
formed shape appears as if the object were composed of internal layers that had
been caused to slide over each other is called a shear. Two common shearing
transformations are those that shift coordinate x values and those that shift y
values.

An x-direction shear relative to the x axis is produced with the transformation
matrix

1 sh,y 0
0 1 0 (5-57)
0 0 1

which transforms coordinate positions as
b , A s il
x' =x4shyy, y =1 (5-58)
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Exercise:

Find the transformation matrix applied to the rectangle shown
below (original position); what are the coordinates of the rotation

point?
150 +
100 -+ 7
Original Position
50 +
Rotated Position
i f ; t } t T
—-150 —-100 —50 50 100 150 200
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End Of Presentation
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