Geometric Transformation In

Three Dimensional Space




Three Dimensional Translation

A position P = (x, y, z) in three-dimensional space is translated to a location P’ =
(x’, ¥, z') by adding translation distances t,, ty, and t, to the Cartesian coordinates
of P:

x'=x+t, Y =y+t, Z =z+t (5-70)

Figure 5-34 illustrates three-dimensional point translation.

We can express these three-dimensional translation operations in matrix form
as in Eq. 5-17. But now the coordinate positions, P and P’, are represented in
homogeneous coordinates with four-element column matrices, and the translation
operator T is a 4 by 4 matrix:

- —_ — — — —

X 1 0 0 & X
y| _ 10 1 0 & 4 %
2| =loo0 1 £|°]|z2 (5-71)
_1_J _O 0 0O 1_ _1_
or
P=T.-P (5-72)
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FIGURE 5-35  Shifting the position of a
three-dimensional object using translation
vector T.
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Three Dimensional Rotation

We can rotate an object about any axis in space, but the easiest rotation axes to
handle are those that are parallel to the Cartesian-coordinate axes. Also, we can use
combinations of coordinate-axis rotations (along with appropriate translations)

to specify a rotation about any other line in space. Therefore, we first consider the
operations involved in coordinate-axis rotations, then we discuss the calculations
needed for other rotation axes.

By convention, positive rotation angles produce counterclockwise rotations
about a coordinate axis, assuming that we are looking in the negative direction
along that coordinate axis (Fig. 5-36). This agrees with our earlier discussion of
rotations in two dimensions, where positive rotations in the xy plane are counter-
clockwise about a pivot point (an axis that is parallel to the z axis).

YA
YA -
| lis. .Y FIGURE 5-36 Positive rotations
MR o A .
: v about a coordinate axis are
\ - )% l
5\ f
' G crM

. ,

-~

the positive half of the axis toward the

counterclockwise, when looking along
origin.
) (b)

\
(a) 7
(c)
2018-2019 Dr. Nabil Hemed 4



Three-Dimensional Coordinate-Axis Rotations

The two-dimensional z-axis rotation equations are easily extended to three
dimensions:

x' = xcos@ — ysinb
Yy = xsiné + ycos 6 (5-73)
2=z

Parameter @ specifies the rotation angle about the z axis, and z-coordinate val-

ues are unchanged by this transformation. In homogeneous-coordinate form, the
three-dimensional z-axis rotation equations are

> o cos@ —sinf 0 0 X
y| _|sinf cosé 0 O y -
Z1 =1 o 0 1 0 > (5-74)
1 0 0 0 1 1
which we can write more compactly as
P'=R.(0)-P (5-75)
y
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~ Transformation equations for rotations about the other two coordinate axes
can be obtained with a cyclic permutation of the coordinate parameters x, y, and
z in Egs. 5-73:

X>Y—>z2—>X (5-76)

Thus, to obtain the x-axis and y-axis rotation transformations, we cyclically
replace x with y, y with z, and z with x, as illustrated in Fig. 5-38.
Substituting permutations 5-76 into Eqs. 5-73, we get the equations for an
x-axis rotation:
Yy = ycosf — zsinb
Z = ysinf + zcos b (5-77)
=

YA ZA XA

~Y

=Y
<Y

4 x y

FIGURE 5-38  Cyclic permutation of the Cartesian-coordinate axes to produce the

three sets of coordinate-axis rotation equations.
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A cyclic permutation of coordinates in Eqgs. 5-77 gives us the transformation
equations for a y-axis rotation:

Z = zcos@ — xsinf
x' = zsin@ + x cos@
y =y

An example of y-axis rotation is shown in Fig. 5-40.

FIGURE 5-40  Rotation of an object about the
Y axis.

An inverse three-dimensional rotation matrix is obtained in the same way
as the inverse rotations in two dimensions. We just replace the angle 6 with —6.
Negative values for rotation angles generate rotations in a clockwise direction,
and the identity matrix is produced when we multiply any rotation matrix by
its inverse. Since only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows and
columns. That is, we can calculate the inverse of any rotation matrix R by forming
its transpose (R~! = RT).
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General Three-dimensional Rotation

A rotation matrix for any axis that does not coincide with a coordinate axis can
be set up as a composite transformation involving combinations of translations
and the coordinate-axis rotations. We first move the designated rotation axis onto
one of the coordinate axes. Then we apply the appropriate rotation matrix for
that coordinate axis. The last step in the transformation sequence is to return the
rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is parallel
to one of the coordinate axes, we attain the desired rotation with the following
transformation sequence.

(1) Translate the object so that the rotation axis coincides with the parallel coor-
dinate axis.

(2) Perform the specified rotation about that axis.

(3) Translate the object so that the rotation axis is moved back to its original
position.

2018-2019 Dr. Nabil Hemed 8



Ropas =~
T Axjg
z X z B X

(a)
Original Fosition; of Sbject Rotate Object !I(:l)n'ough Angle 6 FIGURE 5-41 Sequence of
transformations for rotating
an object about an axis that is
parallel to the x axis.

4\

X

(b) (d)
Translate Rotation Axis onto x Axis Translate Rotation
Axis to Original Position

-
<

The steps in this sequence are illustrated in Fig. 5-41. A coordinate position P is
transformed with the sequence shown in this figure as

P="T":Ru(@):T:P (5-79)
where the composite rotation matrix for the transformation is
R@O)=T " Re(0)- T (5-80)

This composite matrix is of the same form as the two-dimensional transformation
sequence for rotation about an axis that is parallel to the z axis (a pivot point that
is not at the coordinate origin).



When an object is to be rotated about an axis|that is not parallel fo one of
the coordinate axes, we must perform some additional transformations. In this
case, we also need rotations to align the rotation axis with a selected coordinate
axis and then to bring the rotation axis back to its original orientation. Given the
specifications for the rotation axis and the rotation angle, we can accomplish the
required rotation in five steps:

(1) Translate the object so that the rotation axis passes through the coordinate
origin.

(2) Rotate the object so that the axis of rotation coincides with one of the coordi-
nate axes.

(3) Perform the specified rotation about the selected coordinate axis.

(4) Apply inverse rotations to bring the rotation axis back to its original orienta-
tion.

(5) Apply the inverse translation to bring the rotation axis back to its original
spatial position.
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FIGURE 5-42  Five
transformation steps for
obtaining a composite matrix
for rotation about an arbitrary
axis, with the rotation axis
projected onto the z axis.
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Three dimensional Scaling

The matrix expression for the three-dimensional scaling transformation of a po-
sition P = (x, v, z) relative to the coordinate origin is a simple extension of two-
dimensional scaling. We just include the parameter for z-coordinate scaling in the

transformation matrix:

Ed (s, 0 0 0] [x]

yl o 0 Sy 0 0 1/ Z
71 =10 0 s, 0] |z (5-110)
1] o o o 1| |1

The three-dimensional scaling transformation for a point position can be repre-
sented as

P=S.P (5-111)
where scaling parameters s,, s,, and s, are assigned any positive values. Explicit

expressions for the scaling transformation relative to the origin are

/ / ;
X' = X8, Yy =y-sy, Z =28y (5—11122)
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Scaling an object with transformation 5-110 changes the position of the object
relative to the coordinate origin. A parameter value greater than 1 moves a point
farther from the origin in the corresponding coordinate direction. Similarly, a
parameter value less than 1 moves a point closer to the origin in that coordinate
direction. Also, if the scaling parameters are not all equal, relative dimensions of a
transformed object are changed. We preserve the original shape of an object with
a uniform scaling: sy = s, = s,. The result of scaling an object uniformly with each
scaling parameter set to 2 is illustrated in Fig. 5-50.

FIGURE 5-50 = Doubling the size of an object \
with transformation 5-110 also moves the object
farther from the origin. z
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Since some graphics packages provide only a routine that scales relative to
the coordinate origin, we can always construct a scaling transformation with
respect to any selected fixed position (x¢, ys, zf) using the following transformation
sequence. i

=]
(xpyp 26

Translate

(b)
(1) Translate the fixed point to the origin.

(2) Apply the scaling transformation relative to the coordinate origin using
Eq. 5-110.

(3) Translate the fixed point back to its original position.

o
(X ¥p 25)

This sequence of transformations is demonstrated in Fig. 5-51. The matrix repre-

sentation for an arbitrary fixed-point scaling can then be expressed as the con- : _— ¥
catenation of these translate-scale-translate transformations: ©
er O O (1 o Sx)xf i
T(xf, Yf, Zf)-S(Sx, Sy, $,)-T( Xf, —Yf, Zf) =lo 0 & (- Sz)Zf (5-113)
0 0 0 1

(Xp ¥p 25)

Inverse Translate

(d)

FIGURE 5-51 A sequence
of transformations for scaling
an object relative to a selected

fixed point, using EqI 1?-110.

(g Yp 25)

Original Position
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Three-Dimensional Reflections

A reflection in a three-dimensional space can be performed relative to a selecte
reflection axis or with respect to a reflection plane. In general, three-dimensional re-
flection matrices are set up similarly to those for two dimensions. Reflections rel-
ative to a given axis are equivalent to 180° rotations about that axis. Reflections
with respect to a plane are equivalent to 180° rotations in four-dimensional space.
When the reflection plane is a coordinate plane (xy, xz, or yz), we can think of the
transformation as a conversion between a left-handed frame and a right-handed
frame (Appendix A).

An example of a reflection that converts coordinate specifications froma right-
handed system to a left-handed system (or vice versa) is shown in Fig. 5-52. This
transformation changes the sign of z coordinates, leaving the values for the x and
y coordinates unchanged. The matrix representation for this reflection relative to
the xy plane is

1 0 @ O
01 0 0

Merefiect = | 9 0 -1 0 (5-114)
0 0 0 1

Transformation matrices for inverting x coordinates or y coordinates are de-
fined similarly, as reflections relative to the yz plane or to the xz plane, respectively.
Reflections about other planes can be obtained as a combination of rotations and
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I AFFINE TRANSFORMATIONS

A coordinate transformation of the form

X' = AyxX + AxyY + AxzZ + by
Z' = QX + a3y + 0,2+ b,

is called an affine transformation. Each of the transformed coordinates x’, ', and
7 is a linear function of the original coordinates x, ¥, and z, and parameters a;; and
by are constants determined by the transformation type. Affine transformations
(in two dimensions, three dimensions, or higher dimensions) have the general
properties that parallel lines are transformed into parallel lines and finite points
map to finite points.

Translation, rotation, scaling, reflection, and shear are examples of affine trans-
formations. We can always express any affine transformation as some composition
of these five transformations. Another example of an affine transformation is the
conversion of coordinate descriptions for a scene from one reference system to
another, since this transformation can be described as a combination of translation
and rotation. An affine transformation involving only translation, rotation, and
reflection preserves angles and lengths, as well as parallel lines. For each of these
three transformations, line lengths and the angle between any two lines remain
the same after the transformation.
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Find the transformation matrix for the rectangle shown below:
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Three-Dimensional Object

Representation

Representation schemes for solid objects are often divided into two broad cat-
egories, although not all representations fall neatly into one or the other of these
two categories. Boundary representations (B-reps) describe a three-dimensional
object as a set of surfaces that separate the object interior from the environ-
ment. Typical examples of boundary representations are polygon facets and spline
patches. Space-partitioning representations are used to describe interior prop-
erties, by partitioning the spatial region containing an object into a set of small,

nonoverlapping, contiguous solids (usually cubes).
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Boundary representation
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POLYHEDRA

The most commonly used boundary representation for a three-dimensional
graphics object is a set of surface polygons that enclose the object interior. Many
graphics systems store all object descriptions as sets of surface polygons. This
simplifies and speeds up the surface rendering and display of objects, since all
surfaces are described with linear equations. For this reason, polygon descriptions
are often referred to as standard graphics objects. In some cases, a polygonal repre-
sentation is the only one available, but many packages also allow object surfaces
to be described with other schemes, such as spline surfaces, which are usually con-
verted to polygonal representations for processing through the viewing pipeline.

To describe an object as a set of polygon facets, we give the list of vertex coordi-
nates for each polygon section over the object surface. The vertex coordinates and
edge information for the surface sections are then stored in tables (Section 3-15),
along with other information such as the surface normal vector for each polygon.
Some graphics packages provide routines for generating a polygon-surface mesh
as a set of triangles or quadrilaterals. This allows us to describe a large section of
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EEE QUADRIC SURFACES

A frequently used class of objects are the quadric surfaces, which are described
with second-degree equations (quadratics). They include spheres, ellipsoids, tori,
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellip-
soids, are common elements of graphics scenes, and routines for generating these
surfaces are often available in graphics packages. Also, quadric surfaces can be
produced with rational spline representations.

X axis

FIGURE 8-2  Parametric  Sphere
coordinate position (r, 8, ¢)

on the surface of a sphere In Cartesian coordinates, a spherical surface with radius  centered on the coor-
with radius r. dinate origin is defined as the set of points (x, y, z) that satisfy the equation:
4y + 22 =r? (8-1)

We can also describe the spherical surface in parametric form, using latitude and
longitude angles (Fig. 8-2):

X =171 Ccos¢coso, ~ B2 =<0 =7m/2
Y =7 cos¢sing, —nT<0<nm (8-2)
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An ellipsoidal surface can be described as an extension of a spherical surface,
where the radii in three mutually perpendicular directions can have different
values (Fig. 8-4). The Cartesian representation for points over the surface of an

ellipsoid centered on the origin is

; 2 2 2
k ry ty r,

) And a parametric representation for the ellipsoid in terms of the latitude angle ¢
and the longitude angle 6 in Fig. 8-2 is

FIGURE 8-4 An ellipsoid

with radii ry, ry, and 1, X = 1y COS qf) CcoS 9, — I[/Z < ¢) < 71'/2

centered on the coordinate . 3.4

origin. y =1, Co8Psing, —m<f<nm (6-4)
z="1,8N¢
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END OF PRESENTATION




