Two-Dimensional Viewing

The 2D Viewing Pipeline

Construct Convert 3 g
World-Coordinate : qu]d Tra\“Sf‘:’r?“ Viewing Map Nc_>m1ahzed
MC 7 . wWC Coordinates Coordinates to Coordinatesto |
Sc_ene Usmg. : to Normalized Device
Modelmg-Coor.dmate Viewing Coordinates Coordinates
Transformations O gt otas
FIGURE 6-3 Two-dimensional viewing-transformation pipeline.

2018-2019 Dr. Nabil Hamed 2

World coordinates clipping window

Clipping Window

ywmax

yw

 Pinin [T

yvmax

yvmin

Viewport

World Coordinates

JC’Umin xvmax

Viewport Coordinates

Window to viewport transformation: is the mapping from world

coordinates to device coordinates.

2018-2019 Dr. Nabil Hamed

Normalization and view port

transformation
w Y ._C ll_l_).p_nlg_.“_llil Sl.omw__ s 1
o T : @ 1| Normalization
| (xw, yw) | Viewport
: ! YVmax + [mEg T
: , i (xv,yv) |
' |
: | YVmin + e e e e
ywmin e el e e e e B N e -
| | | —
x’wmin xwmax 0 xvmm xvmax 1

FIGURE 6-7 A point (xw, yw) in a world-coordinate clipping
window is mapped to viewport coordinates (xv, yv), within a unit
square, so that the relative positions of the two points in their respective
rectangles are the same.

2018-2019 Dr. Nabil Hamed

To transform the world-coordinate point into the same relative position within

the viewport, we require that

XUmax — XVUmin XWmax — XWmin

YU — YVUmin . YW — YWmin

YVUmax = YVUmin YWmax — YWmin

Solving these expressions for the viewport position (xv, yv), we have

XV = S, xXw + &
yv = Syyw + 1y

where the scaling factors are

XVUmax — XVUmin

Sx —
XWmax — XWmin

_ YVUmax — YVUmin
YWmax — YWmin

Sy
and the translation factors are

; XWmaxX Vmin — XWminX Umax
x ——t

XWmax — XWmin

. YWmaxYVUmin — YWmin Y Vmax
=
4 YWmax — YWmin

(6-2)

(6-3)

(6-4)

(6-5)

Transformation form world coordinates

to view port coordinates

(1) Scale the clipping window to the size of the viewport using a fixed-point
position of (XWmin, YWmin)-
(2) Translate (XWmin, YWmin) tO (XVUmin, YVmin)-

The scaling transformation in step (1) can be represented with the two-
dimensional matrix

Sy 0 xwmin(1l —sy)
S= |0 s, Ywmin(l—-sy) (6-6)
0 O 1

2018-2019 Dr. Nabil Hamed

where s, and s, are the same as in Egs. 6-4. The two-dimensional matrix repre-
sentation for the translation of the lower-left corner of the clipping window to the
lower-left viewport corner is

0 XVUmin — XWmin
1 YVmin — YWmin (6-7)
0 1

T =

OO =

And the composite matrix representation for the transformation to the normalized
viewport is

. 0 i,
Mwindow, normviewp — T-S= 0 Sy ty (6"8)
0O 0 1

which gives us the same result as in Egs. 6-3

2018-2019 Dr. Nabil Hamed 7

Clipping Algorithms

Generally, any procedure that eliminates those portions of a picture that are either
inside or outside of a specified region of space is referred to as a clipping algorithm
or simply clipping. Usually a clipping region is a rectangle in standard position,
although we could use any shape for a clipping application.

¢ Point Clipping

e Line Clipping (straight-line segments)

e Fill-Area Clipping (polygons)

2018-2019 Dr. Nabil Hamed 8

Point clipping

i TWO-DIMENSIONAL POINT CLIPPING

For a clipping rectangle in standard position, we save a two-dimensional point
P = (x, y) for display if the following inequalities are satistied:

XWmin < X < XWmax

YWmin = Y = YWmax

(6-12)

2018-2019 Dr. Nabil Hamed 9

World Coordinate System (Model Space)
A

WCS.ymax
P o - / 1.
! o |
! o ° * |

wes.Xxmin ° ° | WCs.xmax
! (J |

! >
The limits of the ¢
WCs L

wcs.ymin

The coordinates of the points are given in world co-ordinates

The limits (extents) of the WCS are determined by the points in the model
2018-2019 Dr. Nabil Hamed 10

The View Window System

A

e P .
I A ywmax I
- . 1 e :
| ° ¢ : |
| Xwmin ° ° ixwmax |
» .o !
. ‘ | .
] . |
| VWS.or : > ,
® ywmin i

|
, |
: ° i !
° ° |

|
, |
, |
A T

The limits (extents) of the VWS are determined by the user by panning (sliding the view

window) and zooming (enlarging or shrinking the view window)
2018-2019 Dr. NabiT Hamed 11

Points in the WCS (model) that lie outside thg\view window are clipped removed

Clipping function:

|
| A VWS.ymax
e o
: : I
: vws.xmih | o ° -VWS.Xmax
I
' I
; :
vWs.org : >
vWSs.ymin

for each point (p) in the wcs
if ((p.x <vws.xmin) or p.x > (vws.xmax) or (p.y < vws.ymin) or (p.y > vws.ymax))

2o€lipipoint p

Dr. Nabil Hamed

12

Line clipping

Clipping
Window

2018-2019

Before Clipping

(a)

Dr. Nabil Hamed

Clipping
Window

After Clipping
(b)

13

Line clipping Algorithms

We test a line segment to determine if it is completely inside or outside a
selected clipping-window edge by applying the point-clipping tests of the previ-
ous section. When both endpoints of a line segment are inside all four clipping
boundaries, such as the line from P; to P, in Fig 6-11, the line is completely inside
the clipping window and we save it. And when both endpoints of a line segment
are outside any one of the four boundaries (line P3P, in Fig. 6-11), that line is com-
pletely outside the window and it is eliminated from the scene description. But
if both these tests fail, the line segment intersects at least one clipping boundary
and it may or may not cross into the interior of the clipping window.

2018-2019 Dr. Nabil Hamed 14

Cohen-Sutherland Line Clipping

bit | bit | bit | bit

Top l Right
Bottom Left

FIGURE 6-12 A possible
ordering for the clipping-
window boundaries
corresponding to the bit
positions in the Cohen-
Sutherland endpoint region
code.

2018-2019 Dr. Nabil Hamed 15

1000

FIGURE 6-13 The nine
binary region codes for @@= ——-eeep—o 4
identifying the position of a 255
line endpoint, relative to the

clipping-window boundaries.

Clipping Window

0101 | 0100 0110

Once we have established region codes for all line endpoints, we can quickly
determine which lines are completely inside the clip window and which are clearly
outside. Any lines that are completely contained within the window edges have
a region code of 0000 for both endpoints, and we save these line segments. Any

line that has a region-code value of 1 in the same bit position for each endpoint
is completely outside the clipping rectangle, and we eliminate that line segment.

2018-2019 Dr. Nabil Hamed 16

we can more efficiently determine the values for a region-code using
bit-processing operations and the following two steps: (1) Calculate differences
between endpoint coordinates and clipping boundaries. (2) Use the resultant
sign bit of each difference calculation to set the corresponding value in the re-
gion code. For the ordering scheme shown in Fig. 6-12, bit 1 is the sign bit of
X — XWmin; bit 2 is the sign bit of xwyax — x; bit 3 is the sign bit of ¥ — ywmn; and
bit 4 is the sign bit of ywmax — v.

We can perform the inside-outside tests for line segments using logical opera-
tors. When the or operation between two endpoint region codes for a line segment
is false (0000), the line is inside the clipping window. Therefore, we save the line
and proceed to test the next line in the scene description. When the and operation
between the two endpoint region codes for a line is true (not 0000), the line is
completely outside the clipping window, and we can eliminate it from the scene
description.

2018-2019 Dr. Nabil Hamed 17

2018-2019

Clipping
Window

.P]

Dr. Nabil Hamed

FIGURE 6-14 Lines extending from
one clipping-window region to another
may cross into the clipping window, or
they could intersect one or more clipping
boundaries without entering the window
interior.

18

Figure 6-14 illustrates two line segments that cannot be immediately identified
as completely inside or completely outside the clipping window. The region codes
for the line from P; to P, are 0100 and 1001. Thus, P is inside the left clipping
boundary and P, is outside that boundary. We then calculate the intersection
position P}, and we clip off the line section from P, to P;. The remaining portion
of the line is inside the right border line, and so we next check the bottom border.
Endpoint P; is below the bottom clipping edge and P, is above it, so we determine
the intersection position at this boundary (P}). We eliminate the line section from
P; to P} and proceed to the top window edge. There we determine the intersection
position to be Pj. The final step is to clip off the section above the top boundary
and save the interior segment from P to P;. For the second line, we find that point
P, is outside the left boundary and Py is inside. Thus, we calculate the intersection
position P; and eliminate the line section from P3 to Py. By checking region codes
for the endpoints P; and Py, we find that the remainder of the line is below the
clinnine window and can be eliminated also.

2018-2019 Dr. Nabil Hamed 19

END OF PRESENTATION

2018-2019 Dr. Nabil Hamed

