
Introduction to Algorithms
and Programming

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Expressions

Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language

• To understand expression evaluation, need to
be familiar with the orders of operator and
operand evaluation

• Essence of imperative languages is dominant
role of assignment statements

Expressions

• An expression is a combination of one or more
operators and operands

• Arithmetic expressions compute numeric results and
make use of the arithmetic operators:

• If either or both operands used by an arithmetic operator are

floating point, then the result is a floating point

Addition

Subtraction

Multiplication

Division

Remainder

+

-

*

/

%

Division and Remainder

• If both operands to the division operator (/) are
integers, the result is an integer (the fractional part is
discarded)

• The remainder operator (%) returns the remainder after dividing the

second operand into the first

14 / 3 equals

8 / 12 equals

4

0

14 % 3 equals

8 % 12 equals

2

8

Operator Precedence

• Operators can be combined into complex expressions

result = total + count / max - offset;

• Operators have a well-defined precedence which
determines the order in which they are evaluated

• Multiplication, division, and remainder are evaluated
prior to addition, subtraction, and string concatenation

• Arithmetic operators with the same precedence are
evaluated from left to right, but parentheses can be
used to force the evaluation order

Operator Precedence

• What is the order of evaluation in the following
expressions?

a + b + c + d + e

1 432

a + b * c - d / e

3 241

a / (b + c) - d % e

2 341

a / (b * (c + (d - e)))

4 123

Expression Trees

• The evaluation of a particular expression can be
shown using an expression tree

• The operators lower in the tree have higher
precedence for that expression

a + (b – c) / d

a

+

/

- d

b c

Assignment Revisited

• The assignment operator has a lower
precedence than the arithmetic operators

First the expression on the right hand

side of the = operator is evaluated

Then the result is stored in the

variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

Effect of sum = sum + item;

Effect of scanf("%lf", &miles);

Evaluation Tree for
area = PI * radius * radius;

Step-by-Step Expression Evaluation

Evaluation Tree and Evaluation for
v = (p2 - p1) / (t2 - t1);

Evaluation Tree and Evaluation for
z - (a + b / 2) + w * -y

Assignment Revisited

• The right and left hand sides of an assignment
statement can contain the same variable

First, one is added to the

original value of count

Then the result is stored back into count

(overwriting the original value)

count = count + 1;

Increment and Decrement

• The increment and decrement operators use only one
operand

• The increment operator (++) adds one to its operand

• The decrement operator (--) subtracts one from its
operand

• The statement

count++;

is functionally equivalent to

count = count + 1;

Increment and Decrement

• The increment and decrement operators can be applied in
postfix form:

count++

• or prefix form:

++count

• When used as part of a larger expression, the two forms
can have different effects

• Because of their subtleties, the increment and decrement
operators should be used with care

Assignment Operators

• Often we perform an operation on a variable, and then
store the result back into that variable

• C provides assignment operators to simplify that
process

• For example, the statement

num += count;

is equivalent to

num = num + count;

Assignment Operators

• There are many assignment operators in C,
including the following:

Operator

+=

-=

*=

/=

%=

Example

x += y

x -= y

x *= y

x /= y

x %= y

Equivalent To

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

Assignment Operators

• The right hand side of an assignment operator can be a
complex expression

• The entire right-hand expression is evaluated first, then
the result is combined with the original variable

• Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

Boolean Expressions

• A Boolean expression is an expression that has
relational and/or logical operators operating
on Boolean variables.

• A Boolean expression evaluates to
either true or false.

Boolean Operators

• The operators used with the boolean data type fall into two
categories: relational operators and logical operators.

• There are six relational operators that compare values of other types and produce
aboolean result:

== Equals

< Less than

!= Not equals

<= Less than or equal to

>= Greater than or equal to> Greater than

For example, the expression n <= 10 has the value true if x is less than or

equal to 10 and the value false otherwise.

p || q means either p or q (or both)

• There are also three logical operators:

&& Logical AND

|| Logical OR

! Logical NOT

p && q means both p and q

!p means the opposite of p

Logical Operators

• C defines the following logical operators:

! Logical NOT
&& Logical AND
|| Logical OR

• Logical NOT is a unary operator (it operates on one
operand)

• Logical AND and logical OR are binary operators (each
operates on two operands)

Logical NOT

• The logical NOT operation is also called logical
negation or logical complement

• If some condition a is true, then !a is false; if
a is false, then !a is true

• Logical expressions can be shown using a truth
table

a !a

true false

false true

Logical AND and Logical OR

• The logical AND expression

a && b

is true if both a and b are true, and false otherwise

• The logical OR expression

a || b

is true if a or b or both are true, and false otherwise

Logical Operators

• Expressions that use logical operators can
form complex conditions

if (total < MAX+5 && !found)

printf ("Processing…");

• All logical operators have lower precedence than the relational

operators

• Logical NOT has higher precedence than logical AND and logical

OR

Logical Operators

• A truth table shows all possible true-false
combinations of the terms

• Since && and || each have two operands,
there are four possible combinations of
conditions a and b

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

Boolean Expressions

• Specific expressions can be evaluated using
truth tables

total < MAX found !found total < MAX && !found

false false true false

false true false false

true false true true

true true false false

Boolean Expressions in C

• C does not have a Boolean data type.

• Therefore, C compares the values of variables and
expressions against 0 (zero) to determine if they are
true or false.

• If the value is 0 then the result is implicitly assumed to
be false.

• If the value is different from 0 then the result is
implicitly assumed to be true.

• Java have Boolean data types.

Equality Inequality Operator - Exercise
#include <stdio.h>

void main(void)

{

int inum1 = 3, inum2 = 7, inum3 = 3;

if(inum1 < inum2)

printf("inum1 is less than inum2 (%d < %d)\n", inum1, inum2);

else

printf("inum1 is greater than inum2 (%d > %d)\n", inum1, inum2);

if(inum2 > inum1)

printf("inum2 is greater than inum1 (%d > %d)\n", inum2, inum1);

else

printf("inum2 is less than inum1 (%d < %d)\n", inum2, inum1);

if(inum1 == inum3)

printf("inum1 is equal to inum3 (%d == %d)\n", inum1, inum3);

else

printf("inum1 is not equal to inum3 (%d != %d)\n", inum1, inum3);

/* assignment operator, store/assign new value to inum1 variable */

inum1 = inum2 + inum3;

printf("inum1 = %d + %d = %d\n", inum2, inum3, inum1);

}

Multiplicative Additive Operator - Exercise
#include <stdio.h>

void main(void)

{

/* declare 2 variables of type integer */

int iaNumber = 400;

int ianotherNum = 21;

/* do the addition, subtraction, multiplication, division

and modulus operations */

printf("iaNumber = %d, ianotherNum = %d\n", iaNumber,ianotherNum);

printf("iaNumber + ianotherNum = %d\n", iaNumber + ianotherNum);

printf("iaNumber - ianotherNum = %d\n", iaNumber - ianotherNum);

printf("iaNumber * ianotherNum = %d\n", iaNumber * ianotherNum);

/* using /, the fraction part will be truncated */

printf("iaNumber / ianotherNum = %d\n", iaNumber / ianotherNum);

/* cast to double to retain the fraction part */

printf("(double)iaNumber / ianotherNum = %f\n", (double)iaNumber / ianotherNum);

printf("iaNumber %% ianotherNum = %d\n", iaNumber % ianotherNum);

}

