Introduction to Algorithms
and Programming

Expressions

Introduction

* Expressions are the fundamental means of
specifying computations in a programming
language

* To understand expression evaluation, need to

be familiar with the orders of operator and
operand evaluation

* Essence of imperative languages is dominant
role of assignment statements

Expressions

* An expression is a combination of one or more
operators and operands

* Arithmetic expressions compute numeric results and
make use of the arithmetic operators:

Addition +
Subtraction -
Multiplication *
Division /
Remainder %

« If either or both operands used by an arithmetic operator are
floating point, then the result is a floating point

Division and Remainder

* |f both operands to the division operator (/) are

integers, the result is an integer (the fractional part is
discarded)

14 / 3 equals 4
8 / 12 equals 0

« Theremainder operator (%) returns the remainder after dividing the
second operand into the first

14 & 3 equals 2

8 % 12 equals 8

Operator Precedence

e Operators can be combined into complex expressions

result = total 4+ count / max - offset;

* Operators have a well-defined precedence which
determines the order in which they are evaluated

* Multiplication, division, and remainder are evaluated
prior to addition, subtraction, and string concatenation

* Arithmetic operators with the same precedence are
evaluated from left to right, but parentheses can be
used to force the evaluation order

Operator Precedence

* What is the order of evaluation in the following
expressions?

a+b+c+d+ e a+b*xc-d/e
1) (2] (8) (4 3 W @ 2
a/ (b+c) -d¢se

a/ (b* (c+ (d-e)))

NTARN TANEY TN MM mm ,M

Expression Trees

 The evaluation of a particular expression can be
shown using an expression tree

* The operators lower in the tree have higher
precedence for that expression

a+ (b-c)/ d

Assignment Revisited

* The assighment operator has a lower
precedence than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

sum / 4 + MAX * lowest;

I

Then the result is stored in the
variable on the left hand side

answer

Effect of sum = sum + item;

Before assignment sum item

After assignment sum

Effect of scanf("%If", &miles);

number entered 30.5

Evaluation Tree for
area = Pl * radius * radius;
area = PI * radius * radius

Step-by-Step Expression Evaluation

PI * radius * radius
3.14159 2.0 2.0

6.28318

area

12.56636

Evaluation Tree and Evaluation for
v=(p2-pl)/(t2-1t1);

v=(p2 —pl) / (t2 — tl1) pl p2 tl t2
4.5 9.0 0.0 60.0
v = (p2 — pl) / (t2 - t1)
9.0 4.5 60.0 0.0
4.5 60.0

0.075

Evaluation Tree and Evaluation for
z-(a+b/2)+w*-y

Assignment Revisited

 Theright and left hand sides of an assighment
statement can contain the same variable

First, one is added to the
original value of count

count = count + 1;

\ J
Y

Then the result is stored back into count
(overwriting the original value)

Increment and Decrement

* The increment and decrement operators use only one
operand

 The increment operator (++) adds one to its operand

 The decrement operator (—-) subtracts one from its
operand

 The statement
count++;
is functionally equivalent to

count = count + 1;

Increment and Decrement

* The increment and decrement operators can be applied in
postfix form:

count++
e or prefix form:
++count

* When used as part of a larger expression, the two forms
can have different effects

 Because of their subtleties, the increment and decrement
operators should be used with care

Assignment Operators

e Often we perform an operation on a variable, and then
store the result back into that variable

e Cprovides assignment operators to simplify that
process

* For example, the statement
num += count;

is equivalent to

num = num + count;

Assignment Operators

* There are many assignment operators in C,
including the following:

Operator Example Equivalent To
+= X +t=y X=X +y
-= X =Y X=X -Y
* = X * = y X = X * y
/= x /=y x=x/y
&= X 3=y X =X %Y

Assignment Operators

 The right hand side of an assignment operator can be a
complex expression

* The entire right-hand expression is evaluated first, then
the result is combined with the original variable

e Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

Boolean Expressions

* A Boolean expression is an expression that has

relational and/or logical operators operating
on Boolean variables.

* A Boolean expression evaluates to
either true or false.

Boolean Operators

The operators used with the boolean data type fall into two
categories: relational operators and logical operators.

There are six relational operators that compare values of other types and produce
aboolean result:

== Equals = Not equals
< Less than <= Less than or equal to
> Q@reater than >= (@reater than or equal to

For example, the expression n <= 10 has the value true if X is less than or
equal to 10 and the value £a 1 se otherwise.

There are also three logical operators:

&& Logical AND p && g means both p and g
| | Logical orR p | | gmeans either p or g (or both)

! Logical NOT ! p means the opposite of p

i/
| ,A

Logical Operators

 Cdefines the following logical operators:

! Logical NOT
& & Logical AND
|| Logical OR

e Logical NOT is a unary operator (it operates on one
operand)

e Logical AND and logical OR are binary operators (each
operates on two operands)

Logical NOT

* The logical NOT operation is also called logical
negation or logical complement

* If some condition a is true, then !a is false; if
a is false, then ! a is true

* Lo lical expressions can be shown using a truth
table

true false

false true

Logical AND and Logical OR

 The logical AND expression
a && b

is true if both a and b are true, and false otherwise

* The logical OR expression

a || b

is true if a or b or both are true, and false otherwise

Logical Operators

* Expressions that use logical operators can
form complex conditions

if (total < MAX+5 && !'found)
printf ("Processing..");

All logical operators have lower precedence than the relational
operators

Logical NOT has higher precedence than logical AND and logical
OR

Logical Operators

* A truth table shows all possible true-false
combinations of the terms

* Since && and | | each have two operands,
there are four possible combinations of
conditions a and b

a b a && b a || b
true true true true
true false false true
false true false true
false false false false

Boolean Expressions

e Specific expressions can be evaluated using
truth tables

total < MAX | found ! found total < MAX && !'found
false false true false
false true false false
true false true true
true true false false

Boolean Expressions in C

 Cdoes not have a Boolean data type.

* Therefore, C compares the values of variables and
expressions against O (zero) to determine if they are
true or false.

* |f the value is 0 then the result is implicitly assumed to
be false.

* If the value is different from O then the result is
implicitly assumed to be true.

* Java have Boolean data types.

' /‘: \\‘“ "‘ ;' . |\ /" \ A A Iidﬂh“mhw nm

Equality Inequality Operator - Exercise

#include <stdio.h>

void main(void)

{

intinuml =3, inum2 =7, inum3 = 3;

if(inum1 < inum?2)

printf("inum1 is less than inum2 (%d < %d)\n", inum1, inum2);
else

printf("inum1 is greater than inum2 (%d > %d)\n", inum1, inum2);

if(inum2 > inum1)

printf("inum2 is greater than inum1 (%d > %d)\n", inum2, inum1);
else

printf("inum2 is less than inum1 (%d < %d)\n", inum2, inum1);

if(inum1 == inum3)

printf("inum1 is equal to inum3 (%d == %d)\n", inum1, inum3);
else

printf("inum1 is not equal to inum3 (%d != %d)\n", inum1, inum3);

/* assignment operator, store/assign new value to inum1 variable */
inuml =inum2 + inum3;
printf("inum1 = %d + %d = %d\n", inum2, inum3, inum1);

Multiplicative Additive Operator - Exercise

#include <stdio.h>

void main(void)
{
/* declare 2 variables of type integer */
int iaNumber = 400;
int ianotherNum = 21;

/* do the addition, subtraction, multiplication, division

and modulus operations */
printf("iaNumber = %d, ianotherNum = %d\n", iaNumber,ianotherNum);
printf("iaNumber + ianotherNum = %d\n", iaNumber + ianotherNum);
printf("iaNumber - ianotherNum = %d\n", iaNumber - ianotherNum);
printf("iaNumber * ianotherNum = %d\n", iaNumber * ianotherNum);
/* using /, the fraction part will be truncated */
printf("iaNumber / ianotherNum = %d\n", iaNumber / ianotherNum);
/* cast to double to retain the fraction part */
printf("(double)iaNumber / ianotherNum = %f\n", (double)iaNumber / ianotherNum);
printf("iaNumber %% ianotherNum = %d\n", iaNumber % ianotherNum);

