Introduction to Algorithms
and Programming

Arrays

Problem:

Ead 10 numbers from the kexboard and store them

// solution #1
int a0, al, a2, a3, a4, a5, a6, a7, a8, ao;

printf (“Enter a number: %);
scanft (Y $d”, &a0);

printf (Y"Enter a number: “);
scanf (Y %d”, &al);

// ..

printf (“"Enter a number: “);
scanft (Y sd”, &a?9);

Arrays

* Arrays are C data types that help us organize
large amounts of information

Arrays

 An array is an ordered list of values

The entire array Each value has a numeric index
has a single name /
l 0 1 2 3 4 5 6 7 8 9

scores | /987 [94|82 |67 (98 |87 |81 |74 |91

An array of size N is indexed from zero to N-1

This array holds 10 values that are indexed from 0 to 9

VIR TANE TN MM mm ,M

An array with 8 elements of type double

double x[8];
Array x

x[0] x[1] x[2] x[3] x[4] x[5] x[6] Xx[7]

16.0 1200 600 800 205 1200 14.0 '—5405

Problem:
B e D
// solution #2
int all0]; // use an array
for (1=0; i< 10; i++)
{
printf (“Enter a number: %);

scanf (™ %47, &al[i]):

Arrays

* A particularvalue in an array is referenced using
the array name followed by the index in brackets

* For example, the expression

scores|[Z]

refers to the value 94 (the 3rd value in the array)

* That expression represents a place to store a
single integer and can be used wherever an
integer variable can be used

Arrays

* For example, an array element can be
assigned a value, printed, or used in a
calculation:

scores[2] = 89;
scores[first] = scores|[first] + 2;
mean = (scores[0] + scores[1l])/2;

printf ("Top = %d"“, scores[5]);

Arrays

* The values held in an array are called array
elements

* An array stores multiple values of the same
type — the element type

* The element type can be a primitive type

 Therefore, we can create an array of

integers, an array of floats, an array of
doubles.

Arrays

* Another way to depict the scores array:

scores » 79
87
94
82
67
o8
87
81
74
91

Declaring Arrays

* |tis possible to initialize an array when it is declared:

float prices[3] = {1.0, 2.1,
2.01%};

e Ortoinitialize it later:

int al[o6];

Declaring Arrays

* Declaring an array of characters of size 3:

char letters[3] = {‘'a’, '‘Yb’,
Y

* Or we can skip the 3 and leave it to the compiler to
estimate the size of the array:

char letters[] = {‘a’, ‘b’, ‘c’};

For loops and arrays

#define N 10
int a[N];
int 1;

for (i=0; 1 < N; 1i++)
printf (“sd\n”, ali]);

for (i=0; i <= N; i++) // this is
an error

printf (“%d\n”, al[il); // out of
bounds

For loops and arrays

#define N 10
int a[N+1];

int 1;

for(1=0; 1 <= N; 1i++)
printf (“sd\n”, alil);

Problem:

Input 10 student IDs and their
corresponding grades (A through
F). Then find out the number of
As, and print the names of the
students that got an A.

Comparing Float Values

* You should rarely use the equality operator (==) when
comparing two floating point values (f1loat or
double)

* Two floating point values are equal only if their
underlying binary representations match exactly

 Computations often result in slight differences that
may be irrelevant

* |n many situations, you might consider two floating
point numbers to be "close enough" even if they aren't
exactly equal

R LR\ ‘MN ‘ﬁm ,M

Comparing Float Values

* To determine the equality of two floats, you
may want to use the following technique:

if (fabs(fl - £2) < TOLERANCE)
printf ("Essentially equal");

If the difference between the two floating point values is less than
the tolerance, they are considered to be equal

The tolerance could be set to any appropriate level, such as
0.000001

Comparing Characters

 As we've discussed, C character data is based
on the ASCII character set

e ASCII establishes a particular numeric value for
each character, and therefore an ordering

* We can use relational operators on character
data based on this ordering

* For example, the character '+ "' is less than the
character 'J"' because it comes before it in the
ASCII character set

