
COACOACOACOA

ChChChCh2222---- PartPartPartPart1111
Introduction to CPU ArchitectureIntroduction to CPU ArchitectureIntroduction to CPU ArchitectureIntroduction to CPU Architecture

By

Dr. Raghad Samir Al Najim

2017@SPU

64

Introduction to CPU ArchitectureIntroduction to CPU ArchitectureIntroduction to CPU ArchitectureIntroduction to CPU Architecture

The operation or task that must perform by CPU are:

1. Fetch Instruction: The CPU reads an instruction from memory.

2. Interprete(decode) Instruction: The instruction is decoded to determine

what action is required.

3. Fetch Data: The execution of an instruction may require reading data

from memory or I/O module.

4. Process data: The execution of an instruction may require performing

some arithmatic or logical operation on data.

5. Write(store) data: The result of an execution may require writing data to

memory or an I/O module.

2

To do these tasks, it should be clear that the CPU needs to store some data temporarily. It

must remember the location of the last instruction so that it can know where to get the

next instruction. It needs to store instructions and data temporarily while an instruction is

beign executed. In other words, the CPU needs a small internal memory.

These storage location are generally referred as registers.

3

The Registers

Registers are used in computer systems as places to store a wide variety of

data, such as addresses, program counters, or data necessary for program

execution.

Simply, a register is a hardware device that stores binary data.

We Know that D flip-flops can be used to implement registers. One D flip-

flop is equivalent to a 1-bit register, so a collection of D flip-flops is necessary

to store multi-bit values.

4

For example, to build a 8-bit register, we

need to connect 8 D flip-flops together. At

each pulse of the clock, input enters the

register and cannot be changed (and thus is

stored) until the clock pulses again.

Data processing on a computer is usually done on fixed size binary words that are stored in

registers. Therefore, most computers have registers of a certain size. Common sizes include

16, 32, and 64 bits. The number of registers in a machine varies from architecture to

architecture, but is typically a power of 2.

Registers contain data, addresses, or control information. Some registers are specified as

“special purpose” and may contain only data, only addresses, or only control information.

Other registers are more generic and may hold data, addresses, and control information at

various times. Information is written to registers, read from registers, and transferred from

register to register. Registers are addressed and manipulated by the control unit itself.

5

The major components of the CPU are:

an Arithmatic and Logic Unit (ALU) and a Control Unit (CU) .

The ALU does the actual computation or processing of data .

The CU controls the movement of data and instruction into and out of the

CPU and controls the operation of the ALU.

The CPU is connected to the rest of the system through system bus. Through

system bus, data or information gets transferred between the CPU and the

other component of the system. The system bus may have three components:

1. Data Bus: Data bus is used to transfer the data between main memory and

CPU.

2. Address Bus: Address bus is used to access a particular memory location

by putting the address of the memory location.

3. Control Bus: Control bus is used to provide the different control signal

generated by CPU to different part of the system .

As for example, memory read is a signal generated by CPU to indicate that a

memory read operation has to be performed. Through control bus this signal

is transferred to memory module to indicate the required operation.

6

CPU ArchitectureCPU ArchitectureCPU ArchitectureCPU Architecture

7

8

Basic processor architectureBasic processor architectureBasic processor architectureBasic processor architecture

Processor

Memory

PC

IR

MDR
Control

ALU
R(n-1)-

R1

R0

MAR

n general purpose

registers

Address of the memory

location to be accessed

Address of the next

instruction to be fetched

and executed.

Instruction that is

currently being

executed

Data to be read into or

read out of the current

location

General purpose

registers

9

Basic processor Basic processor Basic processor Basic processor architecturearchitecturearchitecturearchitecture

Control path is responsible for:

• Instruction fetch and execution sequencing

• Operand fetch

• Saving results

Data path:

• Contains general purpose registers

• Contains ALU

• Executes instructions

Control

Path

Data

Path

Memory

ProcessorMAR MDR

Arithmetic

Logic

+GPR

Unit(Data

path)

Control

Unit

Control

(path)

10

Data path:

• Contains general purpose registers

• Contains ALU

• Executes instructions

Control path is responsible for:

• Instruction fetch and execution sequencing

• Operand fetch

• Saving results

MAR - Memory Address Register

MDR - Memory Data Register

PC - Program Counter

IR - Instruction Register

A

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

IR

FLAG

ALU

PC

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

Overall Internal Structure of a simple CPUOverall Internal Structure of a simple CPUOverall Internal Structure of a simple CPUOverall Internal Structure of a simple CPU

11

MARIEMARIEMARIEMARIE

12

To understand Computer architecture, we will use MARIE, a Machine

Architecture that is Really Intuitive and Easy, is a simple architecture

consisting of memory (to store programs and data) and a CPU (consisting of an

ALU and several registers).

It has all the functional components necessary to be a real working computer.

We describe MARIE’s architecture in the following sections.

13

The Architecture MARIE has the following characteristics:

• Fixed word length, Word (but not byte) addressable. 16-bit data (words have 16

bits)

• 4K words of main memory (this implies 12 bits per address)

• 16-bit instructions, 4 for the opcode and 12 for the address

• A 16-bit accumulator (AC)

• A 16-bit instruction register (IR)

• A 16-bit memory buffer register (MBR)

• A 12-bit program counter (PC)

• A 12-bit memory address register (MAR).

• An 8-bit input register & An 8-bit output register

AC

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

IR

FLAG

ALU

PC

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

Instruction

related

Address

related

MarieMarieMarieMarie’’’’s Architectures Architectures Architectures Architecture

�A 16-bit (AC)

�A 16-bit (IR)

�A 16-bit (MBR)

�A 12-bit (PC)

�A 12-bit (MAR)

In MARIE, there are seven registers, as follows:

• AC: The accumulator, holds data. This is a general purpose register holds data that the CPU

needs to process. Most computers today have multiple general purpose registers.

• MAR: The memory address register, holds the memory address of the data being referenced.

• MBR(MDR): The memory buffer(or data) register, which holds either the data just read from

memory or the data ready to be written to memory.

• PC: The program counter, holds the address of the next instruction to be executed.

• IR: The instruction register, which holds the next instruction to be executed.

• InREG: The input register, which holds data from the input device.

• OutREG: The output register, which holds data for the output device.

16

In addition, there is a status or flag register that holds information indicating various

conditions, such as an overflow in the ALU.

MARIE is a very simple computer with a limited register set. Modern CPUs have multiple

general purpose registers

17

Registers in the control pathRegisters in the control pathRegisters in the control pathRegisters in the control path

• Instruction Register (IR):

• Instruction that is currently being executed.

• Program Counter (PC):

• Address of the next instruction to be fetched and executed.

• Memory Address Register (MAR):

• Address of the memory location to be accessed.

• Memory Data Register (MDR):

• Data to be read into or read out of the current memory location, whose
address is in the Memory Address Register (MAR).

Path through the bus

18

we assume a common bus scheme. Each device

connected to the bus has a number, and before the

device can use the bus, it must be set to that

identifying number. We also have some pathways

to speed up execution.

• a communication path between the MAR and

memory.

• a separate path from the MBR to the AC.

• a special path from the MBR to the ALU to allow

the data in the MBR to be used in arithmetic

operations.

Information can also flow from the AC through the

ALU and back into the AC without being put on the

common bus.

The Instruction Set The Instruction Set The Instruction Set The Instruction Set Architecture (ISA)Architecture (ISA)Architecture (ISA)Architecture (ISA)

19

MARIE has a very simple, instruction set. The instruction set architecture (ISA) of a machine

specifies the instructions that the computer can perform and the format for each

instruction. The ISA is essentially an interface between the software and the hardware.

Each instruction for MARIE consists of 16 bits. The most significant 4 bits, bits 12–15, make

up the opcode that specifies the instruction to be executed (which allows for a total of 16

instructions).

The least significant 12 bits, bits 0–11, form an address, which allows for a maximum

memory size of 212–1.

Instruction

20

Instruction typesInstruction typesInstruction typesInstruction types

Most ISAs Computer instructions must be capable of performing 4 types of operations:

• Data transfer/movement between memory and processor registers.

• E.g., memory read, memory write

• Arithmetic and logic operations:

• E.g., addition, subtraction, comparison between two numbers.

• Program sequencing and flow of control:

• Branch instructions

• Input/output transfers to transfer data to and from the real world.

MARIE’s instruction set consists of the instructions
shown:

21

22

MARIE’s instruction set are:

The Load instruction allows us to move data from memory into the CPU (via the MBR and

the AC). All data (which includes anything that is not an instruction) from memory must

move first into the MBR and then into either the AC or the ALU; there are no other options

in this architecture.

Notice that the Load instruction does not have to name the AC as the final destination; this

register is implicit in the instruction. Other instructions reference the AC register in a similar

fashion.

The Store instruction allows us to move data from the CPU back to memory.

The Add and Subt instructions add and subtract, respectively, the data value found at

address X to or from the value in the AC. The data located at address X is copied into the

MBR where it is held until the arithmetic operation is executed.

Input and Output allow MARIE to communicate with the outside world.

The Halt command causes the current program execution to terminate.

23

The Skipcond instruction allows us to perform conditional branching (as is done with

“while” loops or “if” statements). The Skipcond instruction is executed, based on the

value stored in the AC.

Two of the address bits (let’s assume we always use the two address bits closest to the

opcode field, bits A10 and A11) specify the condition to be tested.

If the two address bits are 00, this translates to “skip if the AC is negative.”

If the two address bits are 01 (bit eleven is 0 and bit ten is 1), this translates to “skip if the AC

is equal to 0.”

Finally, if the two address bits are 10 , this translates to “skip if the AC is greater than 0.”

By “skip” we simply mean jump over the next instruction. This is accomplished by

incrementing the PC by 1, essentially ignoring the following instruction, which is never

fetched.

The Jump instruction, an unconditional branch, also affects the PC.

This instruction causes the contents of the PC to be replaced with the value of X,

which is the address of the next instruction to fetch.

24

Let’s examine the instruction format used in MARIE. Suppose we have the following 16-bit

instruction:

The leftmost 4 bits indicate the opcode, or the instruction

to be executed.

This instruction causes the data value found in main memory, address 3, to be

copied into the AC.

25

Consider another instruction:

We go to main memory, get the data value at address 00D, and add this

value to the AC. The value in the AC would then change to reflect this sum.

26

One more example follows:

The opcode for this instruction represents the Skipcond

instruction. Bits ten and eleven (10). This implies a “skip if

AC greater than 0.”

If the value in the AC is less than zero, this instruction is

ignored and we simply go on to the next instruction.

If the value in the AC is greater than zero, this instruction causes the PC to be

incremented by 1, thus causing the instruction immediately following this instruction

in the program to be ignored (keep this in mind as you read the following section on

the instruction cycle).

Register Transfer Notation

27

In the Load instruction loads the contents of the given

memory location into the AC register. But, if we observe

what is happening at the component level, we see that

multiple “mini-instructions” are being executed.

� First, the address from the instruction must be loaded

into the MAR.

� Then the data in memory at this location must be

loaded into the MBR.

� Then the MBR must be loaded into the AC.

These mini-instructions are called microoperations and

specify the elementary operations that can be performed

on data stored in registers.

28

The symbolic notation used to describe the behavior of microoperations is called register

transfer notation (RTN) or register transfer language (RTL).

We use the notation M[X] to indicate the actual data stored at location X in memory, and

→ to indicate a transfer of information.

In reality, a transfer from one register to another always involves a transfer onto the bus

from the source register, and then a transfer off the bus into the destination register

We now present the register transfer notation for each of the instructions in

the ISA for MARIE.

29

�Load X
This instruction loads the contents of memory

location X into the AC.

However, the address X must first be placed into

the MAR. Then the data at location M[MAR] (or

address X) is moved into the MBR. Finally, this

data is placed in the AC.

�Store X
This instruction stores the contents of the AC in

memory location X:

1

2 3

1 2

3

30

�Add X
The data value stored at address X is added to the AC.

This can be accomplished as follows:

�Subt X
Similar to Add, this instruction subtracts the value

stored at address X from the accumulator and places

the result back in the AC:

� Input
Any input from the input device is first routed into the InREG.

Then the data is transferred into the AC.

� Output
This instruction causes the contents of the AC to be placed into

the OutREG, where it is eventually sent to the output device.

31

� Skipcond
This instruction uses the bits in positions 10 and 11 in the address field (A10,A11)to

determine what comparison to perform on the AC. The AC is checked to see whether it is

negative(-ve), equal to zero, or greater than zero. If the given condition is true, then the next

instruction is skipped. This is performed by incrementing the PC register by 1.

If the bits in positions ten and eleven (A10,A11)are both ones, an error condition results.

However, an additional condition could also be defined using these bit values.

32

� Jump X
This instruction causes an unconditional branch to the given address, X. Therefore, to

execute this instruction, X must be loaded into the PC.

In reality, the lower or least significant 12 bits of the instruction register (or IR[11–0])

reflect the value of X. So this transfer is more accurately depicted as:

INSTRUCTION PROCESSING

33

All computers follow a basic machine cycle(Instruction Cycle): the fetch, decode, and

execute cycle.

The Fetch-Decode-Execute Cycle (Instruction cycle)

The CPU fetches an instruction (transfers it from main memory to the instruction register IR),

decodes it (determines the opcode and fetches any data necessary to carry out the

instruction), and executes it (performs the operation(s) indicated by the instruction).

Notice that a large part of this cycle is spent copying data from one location to another.

When a program is initially loaded, the address of the first instruction must be placed in the

PC. The steps in this cycle, which take place in specific clock cycles, are listed below. Note that

Steps 1 and 2 make up the fetch phase, Step 3 makes up the decode phase, and Step 4 is the

execute phase.

34

Fetch/Execute Fetch/Execute Fetch/Execute Fetch/Execute cycle (Instruction Cycle)cycle (Instruction Cycle)cycle (Instruction Cycle)cycle (Instruction Cycle)

• Execution of an instruction takes place in two phases:

• Instruction fetch.

• Instruction execute(decoding+execution).

• Instruction fetch:

• Fetch the instruction from the memory location whose address is in the Program
Counter (PC).

• Place the instruction in the Instruction Register (IR).

• Instruction execute:

• Instruction in the IR is examined (decoded) to determine which operation is to be
performed.

• Fetch the operands from the memory or registers.

• Execute the operation.

• Store the results in the destination location.

• Basic fetch/execute cycle repeats indefinitely.

1. Copy the contents of the PC to the MAR:

2. Go to main memory and fetch the instruction found at the address in the MAR,

placing this instruction in the IR; increment PC by 1 (PC now points to the

next instruction in the program.

(Note: Because MARIE is word-addressable, the PC is incremented by one, which results in

the next word’s address occupying the PC. If MARIE were byte addressable, the PC would

need to be incremented by 2 to point to the address of the next instruction, because each

instruction would require two bytes. On a byte-addressable machine with 32-bit words, the

PC would need to be incremented by 4.)

3. Copy the rightmost 12 bits of the IR into the MAR; decode the leftmost four

bits to determine the opcode, and decode IR[15–12].

4. If necessary, use the address in the MAR to go to memory to get data, placing

the data in the MBR (and possibly the AC), and then execute the instruction

and execute the actual instruction.

36

This cycle is illustrated in the

flowchart shown

Note that computers today, even

with large instruction sets, long

instructions,

and huge memories, can execute

millions of these fetch-decode-

execute cycles in the blink of an

eye.

Simple Program in MARIE

37

A simple program to add two numbers together (both are in main memory), storing the sum

in memory. An assembly language program to do this, along with its corresponding,

machine-language program.

Lets see how to execute

Number of Operands and Instruction Length

MARIE uses a fixed length instruction with a 4-bit opcode and a 12-bit operand.

The instruction length must also be compared to the word length on the machine.

The most common instruction formats include zero, one, two, or three operands.

some instructions for MARIE have no operands, whereas others have one operand.

Arithmetic and logic operations typically have two operands, but can be executed with one

operand (as we saw in MARIE), if the accumulator is implicit.

41

Instruction Format:

The following are some common instruction formats:

• OPCODE only (zero addresses)

• OPCODE + 1 Address (usually a memory address)

• OPCODE + 2 Addresses (usually registers, or one register and one memory address)

• OPCODE + 3 Addresses (usually registers, or combinations of registers and memory)

Data FormatData FormatData FormatData Format

42

Little versus Big Endian: The term endian refers to a computer architecture’s “byte

order,” or the way the computer stores the bytes of a multiple-byte data element.

Virtually all computer architectures today are byte-addressable and must, therefore, have a

standard for storing information requiring more than a single byte.

Some machines store a two-byte integer, for example, with the least significant byte first (at

the lower address) followed by the most significant byte. Therefore, a byte at a lower

address has lower significance. These machines are called little endian machines.

Other machines store this same two-byte integer with its most significant byte first,

followed by its least significant byte. These are called big endian machines because they

store the most significant bytes at the lower addresses.

Most UNIX machines are big endian, whereas most PCs are little endian machines. Most

newer RISC architectures are also big endian.

43

For example, Intel has always done things the “little endian” way whereas Motorola has

always done things the “big endian” way.

For example, consider an integer requiring 4 bytes:

On a little endian machine, this is arranged in memory as follows:

Base Address + 0 = Byte0

Base Address + 1 = Byte1

Base Address + 2 = Byte2

Base Address + 3 = Byte3

44

On a big endian machine, this long integer would then be stored as:

Base Address + 0 = Byte3

Base Address + 1 = Byte2

Base Address + 2 = Byte1

Base Address + 3 = Byte0

For example: Let’s assume that on a byte-addressable machine, the 32-bit hex value

12345678 is stored at address 0.

Each digit requires a nibble, so one byte holds two digits.

This hex value is stored in memory as shown in Figure below, where the shaded cells

represent the actual contents of memory.

Summery of Instruction Execution Summery of Instruction Execution Summery of Instruction Execution Summery of Instruction Execution
SequenceSequenceSequenceSequence

1. Fetch next instruction from memory to IR

2. Change PC to point to next instruction

3. Determine type of instruction just fetched

4. If instruction needs data from memory, determine
where it is

5. Fetch data if needed into register

6. Execute instruction

7. Go to step 1 & continue with next instruction

45

InterruptsInterruptsInterruptsInterrupts

All computers provide a mechanism by which other module (I/O, memory etc.) may

interrupt the normal processing of the processor. The most common classes of interrupts

are:

• Program: Generated by some condition that occurs as a result of an instruction

execution, such as arithmatic overflow, division by zero, attempt to execute an illegal

machine instruction, and reference outside the user's allowed memory space.

• I/O: Generated by an I/O controller, to signal normal completion of an operation or to

signal a variety of error conditions.

• Hardware failure: Generated by a failure such as power failure .

46

Interupts are provided primarily as a way to improve processing effeciency. For example,

most external devices are much slower than the processor. With interrupts, the processor

can be engaged in executing other instructions while an I/O operation is in progress.

For I/O operation, like printing some information by a printer. Printer is much slower

device than the CPU. The CPU puts some information on the output buffer. While printer

is busy printing these information from output buffer ,during this time CPU can perform

some other task which does not involve the memory bus.

When the external device becomes ready to be serviced, that is, when it is ready to

accept more data from the processor, the I/O module for that external device sends an

interrupt request signal to the processor. The processor responds by suspending

operation of the current program, branching off to a program to service the particular

I/O device (known as an interrupt handler), and resuming the original execution after the

device is serviced.

47

Then with the interrupts ,an interrupt cycle is added to the instruction cycle, which is shown

in the figure D .

In the interrupt cycle, the processor checks if any interrupt have occurred, indicated by the

presence of an interrupt signals.

If no interrupts are pending, the processor proceeds to the fetch cycle and fetches the next

instruction of the current program. If an interrupt is pending, the processor does the following

:

1. Saving the address of the next instruction to be executed (current contents of the program

counter) and any other data relevant to the processor's current activity.

2. It sets the program counter to the starting address of an interrupt service routine.

simply branches to its starting location –Calling the subroutine.

3. After a subroutine has been executed, the calling program must resume execution,

continuing immediately after the instruction that called the subroutine –Returning

from subroutine.

Calling – Store the contents of the PC in the link register.

– Branch to the target address specified by the instruction. Returning – Branch to the

address contained in the link register 48

49

Calling & ReturningCalling & ReturningCalling & ReturningCalling & Returning
ExampleExampleExampleExample

50

Nested subroutine call

51

One subroutine calls another, which calls another and so on.

• In this case, the return address of the second call is also stored in the link register,

destroying its previous contents.

• Solution – The last subroutine returns first.

– LIFO: Use Processor stack for storing return addresses.

• SP points the top of stack.

• The Call instruction pushes the contents of the PC onto the processor stack and loads

the subroutine address into the PC.

• The Return instruction pops the return address from the processor stack into the PC.

Nested subroutine calls -example

52

Some examples of Instruction cycle

53

54

Example: Given a memory Example: Given a memory Example: Given a memory Example: Given a memory 4096409640964096xxxx16 16 16 16 , how will the execution cycle will be to add , how will the execution cycle will be to add , how will the execution cycle will be to add , how will the execution cycle will be to add
two numbers stored in memory locations two numbers stored in memory locations two numbers stored in memory locations two numbers stored in memory locations 940940940940, , , , 941 941 941 941 and storing the result at and storing the result at and storing the result at and storing the result at
location location location location 941941941941, as shown:, as shown:, as shown:, as shown:

The most four bits of memory location is the opcode, and

the rest 12 bits are the specified address(in program

segment)

1.The PC contains 300, the address of the first

instruction. This instruction (1940H) is loaded into IR

and the PC is incremented. This process involves the

use of MAR and MDR.

2. The MSB 4 bits (1H) in the IR indicate that the AC is

to be loaded. The remaining 12 bits specify the

address (940H) from which data are to be loaded.

Load AC, [940], AC 3, end of 1st instruction cycle

3. The next instruction (5941) is fetched and 5H meaning

add , and the PC is incremented. PC =302

4. This means , the contents of AC and the contents of

location 941 are added , the result is stored in AC.

ADD AC,[941], [941]+AC AC, end of 2nd I. C

5. Last instruction (2941) is fetched and 2 means store

and the PC is incremented. AC 941, The contents

of the AC are stored in location 941. end of program
55

According to the figure, the instruction cycle will be:

Example: simple programExample: simple programExample: simple programExample: simple program

100: Load A,10

101: Load B,15

102: Add A,B

103: STORE A,[20]

Load A,10

Load B,15

ADD A,B

STORE A,[20]

100

101

102

103

104

105

Program memory

18

19

20

21

Data memory

00

00

00

00

56

Before execution of 1st fetch cycle

A

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

IR

FLAG

ALU

100

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

57

100: Load A,10

After 1st fetch cycle …

A

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

Load A,10

FLAG

ALU

101

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

58

100: Load A,10

After 1st instruction cycle …

10

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

Load A,10

FLAG

ALU

101

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

59

After 2nd fetch cycle …

A

E

D

C

B

ALU

A
d

d
re

ss
 B

u
s

Control Unit

Load B,15

FLAG

ALU

102

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

101: Load B,15

60

After 2nd instruction cycle …

10

E

D

C

15

ALU

A
d

d
re

ss
 B

u
s

Control Unit

Load B,15

FLAG

ALU

102

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

61

After 3rd fetch cycle …

10

E

D

C

15

ALU

A
d

d
re

ss
 B

u
s

Control Unit

ADD A,B

FLAG

ALU

103

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

102: Add A,B

62

After 3rd instruction cycle …

25

E

D

C

15

ALU

A
d

d
re

ss
 B

u
s

Control Unit

ADD A,B

FLAG

ALU

103

+1

D
a

ta
 B

u
s

C
T

R
L

B
u

s

63

Architectural DifferencesArchitectural DifferencesArchitectural DifferencesArchitectural Differences

• Length of microprocessors’ data word

• 4, 8, 16, 32, 64, & 128 bit

• Speed of instruction execution

• Clock rate & processor speed

• Size of direct addressable memory

• CPU architecture

• Instruction set

• Number & types of registers

• Support circuits

• Compatibility with existing software & hardware development systems

So the design is not unique , but depends on the choice of the above points64

