
COA

Ch3-P2

Cache memory
By

Dr.Raghad Samir Al Najim

2017@SPU

42

• A CPU cache is
a cache used by
the central processing
unit of computer to
reduce the average time
to access memory.

• The cache is a smaller,
faster memory which
stores copies of the data
from the most
frequently used main
memory locations.

Introduction

2

• L1 and L2 are levels of cache memory in a computer. If the computer
processor can find the data it needs for its next operation in cache
memory, it will save time compared to having to get it from random access
memory.

• L1 is "level-1" cache memory, usually built onto the microprocessor chip
itself. The L1 cache is a kind of memory and it is the place where the CPU
first try to access.

• L2 caches may be built the same way as the L1 caches, into the CPU but
sometimes it can also be located in another chip or it can be a completely
separate chip.

• With some exceptions, L1 and L2 caches are considered SRAM (static RAM)
while the memory of the computer is considered DRAM (Dynamic Ram).

3

4

 The size of cache memory can vary in its size.
 A typical personal computer’s level 2 (L2) cache is 256K or 512K. Level 1

(L1) cache is smaller, typically 8K or 16K.
 L1 cache resides(تققققستققر) on the processor, whereas L2 cache resides
between the CPU and main memory.
 L1 cache is, therefore, faster than L2 cache.
 Some processors use another cache level named L3.

5

• The term access refers to the action that physically takes place during a read or write
operation.

• The capacity of a memory level is usually measured in bytes.
• The latency is defined as the time interval between the request for information and

the access to the first bit of that information.
• The bandwidth provides a measure of the number of bits per second that can be

accessed.
• The cost of a memory level is usually specified as dollars per megabytes

The memory hierarchy can be characterized by a number of parameters.

• The term access refers to the action that
physically takes place during a read or write
operation.

• The capacity of a memory level is usually
measured in bytes.

• The latency is defined as the time interval
between the request for information & the
access to the first bit of that information.

• The bandwidth provides a measure of the
number of bits per second that can be
accessed.

• The cost of a memory level is usually
specified as dollars per megabytes

6

The memory hierarchy can be characterized by a number of parameters.

The effectiveness of a memory hierarchy depends on the principle of moving information
into the fast memory infrequently and accessing it many times before replacing it with
new information.
This principle is possible due to a phenomenon called locality of reference; that is, within a
given period of time, programs tend to reference a relatively confined area of memory
repeatedly.
There exist two forms of locality: spatial and temporal locality.
 Spatial locality refers to the phenomenon that when a given address has been referenced,
it is most likely that addresses near it will be referenced within a short period of time, for
example, consecutive instructions in a straight line program.

Temporal locality, on the other hand, refers to the phenomenon that once a particular
memory item has been referenced, it is most likely that it will be referenced next, for
example, an instruction in a program loop.

7

The sequence of events that takes place when the processor makes a request for an item
is as follows:.

First, the item is sought in the first memory level of the memory hierarchy. The probability
of finding the requested item in the first level is called the hit(hit ratio), h1. The probability
of not finding (missing) the requested item in the first level of the memory hierarchy is
called the miss ratio, (1-h1). When the requested item causes a “miss,” it is sought in the
next memory level.

The probability of finding the requested item in the second memory level, the hit
ratio of the second level, is h2. The miss ratio of the second memory level is
(1 - h2). The process is repeated until the item is found.
 when the requested item is found, it is brought and sent to the processor.

8

Cache Memory
Now, if it can be arranged to have the active segments of a program in a fast memory, then
the tolal execution time can be reduced. It is the fact that CPU is a faster device and memory
is a relatively slower device.
Memory access is the main bottleneck for the performance efficiency. If a faster memory
device can be inserted between main memory and CPU, the efficiency can be increased. The
faster memory that is inserted between CPU and Main Memory is termed as Cache memory.

9

To make this arrangement effective, the cache must
be considerably faster than the main memory, and
typically it is 5 to 10 time faster than the main
memory.

It is the fact that CPU is a faster device and memory
is a relatively slower device.

10

Some assumptions are made while designing the CPU - memory system:

1. The CPU does not need to know explicitly about the existence of the
cache.

2. The CPU simply makes Read and Write request. The nature of these
two operations are same whether cache is present or not.

3. The address generated by the CPU always refer to location of main
memory.

4. The memory access control circuitry(Memory management unit)
determines whether or not the requested word currently exists in the
cache.

CPU Read request

11

When a Read request is received from the CPU, the contents of a block of
memory words containing the location specified are transferred into the
cache. When any of the locations in this block is referenced by the program,
its contents are read directly from the cache.

The cache memory can store a number of such blocks at any given time.

The correspondence between the Main Memory Blocks and those in the
cache is specified by means of a mapping function.

Note that:
we present cache-mapping function taking into consideration the interface between two
successive levels in the memory hierarchy:

primary level & secondary level.
Cache & Main memory

If the focus is on the interface between the cache and main memory, then the cache
represents the primary level, while the main memory represents the secondary level.

The same principles apply to the interface between any two memory levels in the
hierarchy.

12

13

Memory Management Unit (MMU).

MMU: It should be noted that a request for accessing a memory
element is made by the processor through the address of the
requested element. The addressing by the processor may correspond
to that of an element that exists currently in the cache (cache hit);
otherwise, it may correspond to an element that is currently in the
main memory.

Therefore, address translation has to be made in order to determine where to find the
requested element. This is one of the main functions performed by the memory
management unit (MMU).

if the element is not currently in the cache, then it will be brought (as part of a block) from
the main memory and placed in the cache and the element requested is made available to
the processor.

main memory represents
the second level.

cache represents the first level

14

Address is in secondary memory

CPU

What makes Cache special

15

“special”? Cache is not accessed by address; it is accessed by content.

 For this reason, cache is sometimes called content addressable memory or CAM.

Under most cache mapping schemes, the cache entries must be checked or searched
to see if the value being requested is stored in cache. To simplify this process of
locating the desired data, various cache mapping algorithms are used.

For cache to be functional, it must store useful data. However, this data becomes
useless if the CPU can’t find it. When accessing data or instructions, the CPU first
generates a main memory address. If the data has been copied to cache, the address
of the data in cache is not the same as the main memory address.

Cache Mapping Schemes

16

The CPU uses a specific mapping scheme that “converts” the main memory address into a
cache location. This address conversion is done by giving special significance to the bits in
the main memory address.

We first divide the bits into distinct groups we call fields. Depending on the mapping
scheme, we may have two or three fields. How we use these fields depends on the
particular mapping scheme being used.

Before we discuss these mapping schemes, it is important to understand how data is
copied into cache. Main memory and cache are both divided into the same size blocks.

 When a memory address is generated, cache is searched first to see if the required word
exists there. When the requested word is not found in cache, the entire main memory
block in which the word resides is loaded into cache.

17

• Memory locations(words) can be grouped into block.

• Memory capacity usually measured in bits:

• Total no. of memory locations(words) * size of memory word

• Capacity= no. of blocks* no. of words in block. *no of bits in word

• Ex: If a memory word is 8 bit and the size of a block is 8 words.

• What is the capacity of the main memory, if the total number of blocks in the
memory is 128.

128 blocks * 8 words * 8 bits = 27 * 23 * 23 = 213 = 1K * 8 = 8 Kbit

• How many blocks in the main memory if the memory capacity is 32 Kbit.

• Total number of words = 32 Kbit / 8 bit = 215 / 23 = 212
 words

• Total number of blocks = 212 word / 8 words = 212 / 23 = 29 = 512 blocks

18

So, how do we use fields in the main memory address? One field of the main memory
address points us to a location in cache in which the data resides if it is resident in cache (this
is called a cache hit), or where it is to be placed if it is not resident (which is called a cache
miss).
The cache block referenced is then checked to see if it is valid. This is done by a valid bit with
each cache block.
A valid bit of 0 means the cache block is not valid (we have a cache miss) and we must access
main memory.
A valid bit of 1 means it is valid (we may have a cache hit but we need to complete one more
step before we know for sure).

We then compare the tag in the cache block to the tag field of our address. If the tags are the
same, then we have found the desired cache block (we have a cache hit). At this point we
need to locate the desired word in the block; this can be done using a different portion of the
main memory address called the word field.

19

Cache Dynamics
When a memory read (or fetch) is issued by the CPU:
If the line with that memory address is in the cache (this is called a cache hit), the data is
read from the cache to the MDR.
If the line with that memory address is not in the cache (this is called a miss), the cache is
updated by replacing one of its active lines by the line with that memory address, and
then the data is read from the cache to the MDR.

When a memory write is issued by the CPU:
If the line with that memory address is in the cache, the data is written from the MDR to
the cache, and the line is marked "invalid" (since it no longer is an image of the
corresponding memory line).
If the line with that memory address is not in the cache, the cache is updated by replacing
one of its active lines by the line with that memory address. The data is then written from
the MDR to the cache and the line is marked "invalid."

20

In this figure, there are two valid cache blocks. Block 0 contains multiple words from main
memory, identified using the tag “00000000”. Block 1 contains words identified using tag
“11110101”. The other two cache blocks are not valid.

The size of each field depends on the physical characteristics of main memory and cache.
The word field - identifies a word from a specific block; therefore, it must contain the
appropriate number of bits to do this. This is also true of the block field - it must select a
unique block of cache. The tag field is whatever is left over.
When a block of main memory is copied to cache, this tag is stored with the block &
identifies this block.

Cache Memory
Organization

A Closer Look at Cache

21

Cache Memory Organization
There are three main different organization of Mapping techniques used
for cache memory. The three techniques are discussed below.

 These techniques differ in two main aspects:

1. The criterion used to place, in the cache, an incoming block from the
main memory.

2. The criterion used to replace a cache block by an incoming block (on
cache full).

Three organizations of Mapping
techniques

22

Direct mapping

Fully Associative Mapping

Set-Associative Mapping

Direct Mapping

This is the simplest among the three techniques. Its simplicity stems
from the fact that it places an incoming main memory block into a
specific fixed cache block location.

 The placement is done based on a fixed relation between the
incoming block number, i,
the cache block number, j,
and the number of cache blocks, N:

j = i mod N ??

23

24

Suppose we have a system using direct mapping with 16 words of main memory divided
into 8 blocks (so each block has 2 words).
 Assume the cache is 4 blocks in size (for a total of 8 words). Table below shows how the
main memory blocks map to cache.

For this example:

Main memory

0

7

2 3 *2 1 = 4 bits for addressing
16 words in the main memory

25

• A main memory address has 4 bits (because there are 16 words in main memory).
• This 4-bit main memory address is divided into three fields:
The word field is 1 bit (we need only 1 bit to differentiate between the two words in a
block);
 the block field is 2 bits (we have 4 blocks in cache and need 2 bits to uniquely identify
each block); and the tag field has 1 bit (this is all that is left over).
The main memory address is divided into the fields shown in Figure below:

26

Suppose we generate the main memory address 9. We can see from the mapping listing above
that address 9 is in main memory block 4 and should map to cache block 0 (which means the
contents of main memory block 4 should be copied into cache block 0).

When the CPU generates this address, it first takes the
block field bits 00 and uses these to search in cache
blocks.
 00 indicates that cache block 0 should be checked.
 If the cache block is valid, it then compares the tag field
value of 1 to the tag associated with cache block 0.
 If the cache tag is 1, then block 4 currently resides in
cache block 0.
 If the tag is 0, then block 0 from main memory is
located in block 0 of cache.
(To see this, compare
main memory address 9 = 1001 , which is in block 4, to
main memory address 1 = 0001, which is in block 0.

According to the direct-mapping technique the MMU interprets the address issued by
the processor by dividing the address into three fields

1- Word field = log2B, B is the size of the block in words

2- Block field = log2 N, N is the size in the cache in blocks (lines)

3- Tag field = log2 (M/N), M is the size of the main memory in blocks

4- the number of bits in the main memory address = log2 (BxM)
27

Example 1: Consider, the case of a main memory consisting of 4K blocks, a
cache memory consisting of 128 blocks, and a block size of 16 words.

28

As the figure shows, there are a total of 32 main memory blocks that map to a given cache
block. For example, main memory blocks 0, 128, 256, 384, . . . , 3968 map to cache block 0.
We therefore call the direct-mapping technique a many-to-one mapping technique.

4k=4096
4096*16=65536=16 bit
address of main
memory

29

The MMU protocol steps are:

1. Use the Block field to determine the cache block that should contain the element requested by
the processor. The Block field is used directly to determine the cache block sought, hence the
name of the technique: direct-mapping.

2. Check the corresponding Tag memory to see whether there is a match between its content
and that of the Tag field. A match between the two indicates that the targeted cache block
determined in step 1 is currently holding the requested element by the processor, that is, a cache
hit.

3. Among the elements contained in the cache block, the targeted element can be selected using
the Word field.

4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the required block
has to be brought from the main memory, deposited (يققوضعق)in the cache, and the targeted
element is made available to the processor. The cache Tag memory and the cache block memory
have to be updated accordingly.

Compute the above four parameters for our Example

1- Word field = log2B =log2 (16) = log2 (2 4)= 4 bits

2- Block field =Line fields = log2 N =log2 (128) = log2 (2 7)= 7 bits

3- Tag field = log2 (M/N)= log2 (2 2 x 2 10 / 2 7) = log2 (2 5)= 5 bits

4- the number of bits in the main memory address = log2 (BxM) = =log2 (2 4 x 2 12) = log2 (2 16)=

16 bits the address

Here, the "Word" field selects one from among the 16 addressable words in a line.
The block "Line" field defines the cache line where this memory line should reside.
The "Tag" field of the address is then compared with that cache line's 5-bit tag to
determine whether there is a hit or a miss.

 If there's a miss, we need to swap out the memory line that occupies that position in the
cache and replace it with the desired memory line.

30

E.g., Suppose we want to read or write a word at the address 357A, whose 16 bits are
00110 1010111 1010.
This translates to Tag = 6, line = 87, and Word = 10 (all in decimal).

31

If line 87 in the cache has the same tag (6), then
memory address 357A is in the cache.

 Otherwise, a miss has occurred and the
contents of cache line 87 must be replaced by
the memory line 001101010111 = 855 before
the read or write is executed.

Direct mapping is the most efficient cache
mapping scheme, but it is also the least
effective in its utilization of the cache - that is,
it may leave some cache lines unused.

32

Summery of direct: Use tag to see if a desired word is in cache

– It there is no match, the block containing the required word must first be read from
the memory

Ex: address is A815

a. Check if cache has tag 10101 for block 1
match -> hit; different -> miss, load the corresponding block

b. Access word 5 of the block

Fully Associative Mapping
The MMU interprets the address issued by the processor by dividing it into two fields as

1- Word field = log2B, B is the size of the block in words

2- Tag field = log2 (M), M is the size of the main memory in blocks

3- the number of bits in the main memory address = log2 (BxM)

we can now proceed to explain the protocol used by the MMU to satisfy a
request, the protocol steps are:

33

1. Use the Tag field to search in the Tag memory for a match with any of the tags
stored.

2. A match in the tag memory indicates that the corresponding targeted cache
block determined in step 1 is currently holding the main memory element
requested by the processor, that is, a cache hit.

3. Among the elements contained in the cache block, the targeted element can be
selected using the Word field.

4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the
required block has to be brought from the main memory, deposited in the first
available cache block, and the targeted element (word) is made available to the
processor. The cache Tag memory and the cache block memory have to be
updated accordingly.34

Return to our example:

1- Word field = log2B =log2 (16) = log2 (2 4)= 4 bits

2- Tag field = log2 (M)= log2 (2 2 x 2 10) = log2 (2 12)= 12 bits

3- the number of bits in the main memory address = log2 (BxM) = =log2 (2 4 x 2 12) = log2 (2
16)= 16 bits

35

Here, the "Tag" field identifies one of the 2 12 = 4096 memory lines; all the cache tags are
searched to find out whether or not the Tag field matches one of the cache tags. If so, we
have a hit, and if not there's a miss and we need to replace one of the cache lines by this
line before reading or writing into the cache. (The "Word" field again selects one from
among 16 addressable words (bytes) within the line.)

36

For example, suppose again that we want to
read or write a word at the address 357A,
whose 16 bits are 0011010101111010.
Under associative mapping, this translates to
Tag = 855 and Word = 10 (in decimal).

 So we search all of the 128 cache tags to see
if any one of them will match with 855. If
not, there's a miss and we need to replace
one of the cache lines with line 855 from
memory before completing the read or
write.

The search of all 128 tags in the cache is
time-consuming. However, the cache is fully
utilized since none of its lines will be unused
prior to a miss (recall that direct mapping
may detect a miss even though the cache is
not completely full of active lines).

Set-Associative Mapping

In the set-associative mapping technique, the cache is divided into a number of sets. Each
set consists of a number of blocks. A given main memory block maps to a specific cache
set based on the following:

1- Word field = log2B, B is the size of the block in words

2- Set field = log2 S, S is the number of sets in the cache,

S= N/Bs, where N is the number of cache blocks and Bs is the
number of blocks per set.
3- Tag field = log2 (M/S), M is the size of the main memory in blocks

4- the number of bits in the main memory address = log2 (BxM)

37

Return to our example:
Assume that the system uses set-associative mapping with four blocks per set.

 First: S= N/Bs = 128/4 = 32 sets
1- Word field = log2B =log2 (16) = log2 (2 4)= 4 bits

2- set field= log2 (32)= log2 (2 5)= 5 bits

3- Tag field= log2 (2 2 x 2 10 /32) =7 bits

3- the number of bits in the main memory address = log2 (BxM) = =log2 (2 4 x 2 12) = log2 (2
16)= 16 bits

38

the protocol used by the MMU to satisfy a request made by the processor for accessing a
given element. the steps of this protocol is:

1. Use the Set field (5 bits) to determine (directly) the specified set (1 of the 32 sets).

2. Use the Tag field to find a match with any of the (four) blocks in the determined set. A
match in the tag memory indicates that the specified set determined in step 1 is currently
holding the targeted block, that is, a cache hit.

3. Among the 16 words (elements) contained in hit cache block, the requested word is
selected using a selector with the help of the Word field.

4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the required
block has to be brought from the main memory, deposited in the specified set first, and the
targeted element (word) is made available to the processor. The cache Tag memory and the
cache block memory have to be updated accordingly.

39

40

E.g., Again suppose we want to read or write a
word at the memory address 357A, whose 16
bits are 0011010101111010.

 Under set-associative mapping, this translates
to Tag = 26, Set = 23, and Word = 10 (all in
decimal).
So we search tags in cache set 23 to see if
either one matches tag 26. If so, we have a hit.
Otherwise, one of these blocks must be
replaced by the memory line being addressed
(good old line 855) before the read or write
can be executed.

Summery of the three techniques

41

Effective Access Time and Hit Ratio

42

The performance of a hierarchical memory is measured by its effective
access time (EAT), or the average time per access. EAT is a weighted average
that uses the hit ratio and the relative access times of the successive levels of
the hierarchy. The formula for calculating effective access time for a two-level
memory is given by:

where H = cache hit rate,
AccessC = cache access time,
AccessMM = main memory access time.

43

For example, suppose the cache access time is 10ns, main memory access
time is 200ns, and the cache hit rate is 99%. The average time for the
processor to access an item in this two-level memory would then be:

This formula can be extended to apply to three- or even four-level memories.

	Slide 1
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Cache Memory
	Slide 10
	CPU Read request
	Slide 12
	Memory Management Unit (MMU).
	Slide 14
	What makes Cache special
	Cache Mapping Schemes
	Slide 17
	Slide 18
	Slide 19
	Cache Memory Organization
	Cache Memory Organization
	Three organizations of Mapping techniques
	Direct Mapping
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Fully Associative Mapping
	Slide 34
	Slide 35
	Slide 36
	Set-Associative Mapping
	Slide 38
	Slide 39
	Slide 40
	Summery of the three techniques
	Effective Access Time and Hit Ratio
	Slide 43

