Chapter Four

Fourier Transform of CT
sighals & Systems

(Frequency Response)
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Introduction

There are two ways to analyze and design CT systems:
- The Fourier Transform (used in signal processing)
-The Laplace Transform (used in linear control systems)

The Fourier Transform is a particular case of the Laplace
Transform, so the properties of Laplace transforms are inherited
by Fourier transforms. One can compute Fourier transforms in
the same way as Laplace transforms.
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Relationship with Laplace transform

The Fourier Transform is a particular case of Laplace transform

L(s) = J‘ g(Ne™"dt

F(jw) is often called spectrum or amplitude spectral density

F(jw) = f o()e™ ™ di

Fjw)=L(jw)

S=jw

(spectral refers to 'variation with respect to frequency’,
density refers to ‘amplitude per unit frequency’)
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Connection between the Fourier Transform and
the Laplace Transform:

s

This equation defines the Fourier X(w) = f x(t)e ™ di
transform of x(t): =

The Laplace transform of x(t), is .
given by I{-‘-”]=f x(r)e " dt

—

Comparing these Egs. , we see that the Fourier transform is a
special case of the Laplace transform in which s = jw, that is,

XS5 mjn = *?_{I{ .I’]I-}
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Fourier Transform Pairs
For any signal f(t) , FT and IFT are given by

Define

X

F(o)= | f(t)e™dt

—

£(t)= % [F(o)e“da

and we say that f(t) and F(w) form a Fourier transform pair
denoted by f(t)¢> F(w)
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Some FT Notation:

If X( ) 15 the Founer transform of x(7). .

then we can write this in several ways:

1. x(1) < X(o)

2 X(w)=35 {'{[I}} = &{ } 15 an “operator” that operates on x(f) to grve X[ @)

3.x()= &?_l{.ff{ -L"-’_}}} = 14 } 15 an “operator " that operates on X{ @) to give x(f)
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PROPERTIES OF THE CONTINUOUS-TIME FOURIER
TRANSFORM
A. Linearity:

ax(t) +a,x,(1) —a X \(w) +a,X;(w)
B. Time Shifting:
x(t—ty) e e ™ X(w)
C. Frequency Shifting:

ey (1) = X(w—w,)
D. Time Scaling:

(ar) > —x] 2
xlal)e= —A|—
) |al [ﬁ'}
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E. Time Reversal;

x(=t)e—= X({-w)
F. Duality (or Symmetry):

X(t)e 2mx(—w)

Besides the inverse relationship of frequency and time, by
interchanging the frequency and the time variables in the definitions
of the direct and the inverse Fourier transform similar equations are
obtained. Thus, the direct and the inverse Fourier transforms are dual.
This duality property allows us to obtain the Fourier transform of
signals for which we already have a Fourier pair and that would be
difficult to obtain directly. It is thus one more method to obtain the
Fourier transform, besides the Laplace transform and the integral
definition of the Fourier transform.



. Differentiation in the Time Domain:

dx(1)
dt

—jwX(w)

H. Differentiation in the Frequency Domain:

dX ()
(=it)x(1) e — -
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I. [Integration in the Time Domain:

[ ()

J. Convolution:

dresmX())élew)+ ,i..lf[m}

Jiw

x(t)*xy(1) = X(w)X,(w)
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Table (1): Summery of FT properties

Property Signal Fourier transform
. x(1) X(w)
x/(t) X lw)
IE{.;} X;._.[f.u}
Linearity a,x (1) +azx,t) Xilwl+a, X {w)
Time shifting x(t—1,) e et X ()
Frequency shifting el ol x () Jc" (e — awy)
Time scalin x{ar) X( )
1 1 E I,ﬂ'l
Time reversal x{(—1) Al —w)
Duality X(r) 2axl—w)
. . de(r) .
Time differentiation o S XCiw)
dX (| w)
Frequency differentiation (—jitdx(r) T
|
Integration f; x(r)dr X6 w)+ —Xlw)
. J
Convolution )= x,(r) X lw) X (w)
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Examples of FT of some signals
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Example : Find the FT for the decaying exponential
signal

Given a signal x(f) = e®u(f) find X( @) 1f 5= 0

Solution: First see what x(f) looks like:

1 x(0)
b controls decay rate
[

'
\ The u(r) part forces this to zero
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X(o)= .[_: x(f)e i dt

X(o)=| e u(t)e’™dt :L e eI dt = jﬂ e CHI dy

Y TeE— ;
integrand =0 for 7 <0 d Set lower limut to 0 h Easv
due to the u(r) and then u(f) = 1 over . = W
) . integral!
- integration range S o
_ — =00
|- ]. b o - — 1. [e—(m_,r'm}:ﬂ 3 E—cm.r'm}n]
b+ jo g bOtJjo
1
b+ jo

Dr. Raghad Al Najim 14



x(1) = e "u(r)

Forb=0

-

x(f) = e " ulr)

1 b = 0 controls
Wﬂ

L

X ()

il
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1
—_— | X (ﬂ?) —
b+ jo
(Complex Valued)
X ()| = ; : = | Magnitude
\fr b”+w
/X (@)=—tan" [%) Phase
=, & =

/
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Note that
magnitude

plot has even
symmetry

Note that
phase plot has

odd symmetry

True for every
real-valued signal
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Example: FT of a Rectangular pulse

T = pulse width
p, (1)

Given: a rectangular pulse signal p (1) - .

T
2

Find: P (@)... the FT of p (f)

e

Fecall: we use this symbol

to indicate a rectangular
pulse with width

Note the Notational Convention:
lower-case for time signal and

corresponding upper-case for its FT

Solution:

Note that

1 Ll
p.(f)= 2 2

0. otherwise
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Now apply the definition of the FT:

B(o)=[_p.(e ' dt= [e-”"dr

g Limit integral )
where p (1) 1s non-

zero. . and use the
fact that it1s 1 over

e that region _/u
2 o jer z
_—1[_jﬂ:_z el —g 2 Artificially |
=l I 5 -+ nserted 2 in
Ja@ 2 @ J= numerator and
& 2 R denonunator
- 3
2 Si_[l[ or }JUSE Euler’s
7 Formula
L SR e ] -
T sin goes up and down
ESiH(—] between -1 and 1
5
'Pg_' (m} — 1/e> decays down as || gai't-s.____"H
) big_ .. this causes the overall
function to decay down
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For t=1/2

w

10

20

30

40

P(w)

0.5

0.119

-0.09

0.06

-0.02

note : to evaluate p(0),we can use the proerty of

. SN X
élm() =1
X0 X

R, R, (W)

Zsmz Zsmz 1 sz
P(W)o =" =W oMy
4" ” =

4 . 4

N | =



For this case the FT 1s real valued so we can plot it using a single plot

(shown in solid blue here):

e ! ! ! !

| E— ........... .......... =12 ......... i

20 o 20
Fraguency o (radisec)

 inf @7
s ey {* The sine wiggles up &
PiA)= ' —=——"_ down “between+2/0>"
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Effect of Pulse Width on the FT P (w)

100

a0

o (radi/sec)

T

@ (Edisec)

e e e e

1 1
1 1
“ 2 “
— _.-.I._ -.J... — _.—.I._
| [ |
[ (| | ()]
] ] =+ ] ] =+ ] ] =+
1 1 1 1 1 —.IJ. 1
et J— P
T il e St St R ol S o e
1 __ 1 1 __ 1 | 1 1
1 1 1 1 1 1
s e sy I | O i
1 1 1 1 1 1
! ! ! ! ! Lol
I_ 1 — |_|||||I_|||||||.-| |_|I||||_|||||| —
! 1 H F 1
m ol “ = m
— T Illll.“.lllllll -”- J&.IH ———— .“.lllllll -”_ EI —— Illll_.llllll -”-
“ e 1 i i i
|
i
1
1

|
M
“
- L
i

-—— |I._. (R — T |

I e —— e ]

AN S

=T

0.5f----

i

=

R
=

w (radisec)

22

Dr. Raghad Al Najim



Example: Find FT for 6(t)

) (o]

.E.?{{?{T)}:jm ﬁ(} “mrff?‘ E’_}mﬂ

s

Siftmg property

' 0 RE{COIRS

F 1
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Table (2):

Some examples for FT pairs

| == 2m6(w)

u(t) == mo(w) + L

| /%
e ult) =

jo+a
cos(at) == m(6(w—a)+ o(w + a))

sin(at) == ja(o(w + a) —o(w — a))
rect(t) == smc(w/2T)

sie(r) == rect(w/2m)
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Time Domain and Frequency
Domain Response of LTICT
systems

Introduction
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Input-Output Relationship Characterized Two Wavs

1. Time-Domain: y(f) = h(f)*f(1)

2. Freg-Domain: ¥{m) = H(®)F(®)

Given input f{f) and impulse response A(r). to analyze the system we could either:

1. Compute the convolution h(f)*f(1)
or...
2. Do the following:
(a) Compute H(®) & compute F{m)
(b) Compute the product ¥{w) = H(®)F(m)
(c) Compute the IFT: w(f) = § ! { H(®)F(®)}
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Example
Suppose :You need to send a pulse signal into a computer’s
interface circuit to initiate an event , What kind of signal should you

use?
A rectangular pulse
A rectangular pulse: Ap_(7)

A

bt | ™
2 | =

the interface circuitry consists of an “AC Coupled” transistor
amplifier as shown below



|||||||||||||||

3
|
: | =g We’ll 1ignore the effects of
“ACcoupled” | Re:™> RT ==t 5 | this capacitor in our analysis
: . |—e
T -
*—| —
: g |- Output , _
Input : ‘ A sisnil Model this as an equivalent
signal 4 = < 3 | Input Impedance. ..
ST T simplify here: R
»- ..I.Il.__l lr & L p fy 9

“Equivalent Svstem Model™

C
. | . . x(1) (1)
| H(w)
x(7) Req;ﬁ (1) X(®) Y(w)
; | i What is H(@)??
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H(w) =

JOR, C

1+ joR,C

Dr. Raghad Al Najim
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Some Important rules that could be useful in solving RLC
ccts can be shown in this table:

e Table(4.1), Voltage-current, voltage-charge, and impedance
relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current ~ Current-volage  Volfagecharge  Z(s) = V(s)/I(s)  Y(5) = I(s)/ V{s)

1 d 1
Cj =gk =5 gL G
. o daf) !
—R Il ==V ==
m v{t) = Rifl ()= )=R—- R 2=0
o L T Y LU 1
ot W)= it 7 ﬁ vejdr  ff) i -

Note: The following set of symbols and units is used throughout this book: v(t) ~ V (volts), i(r) - A (amps), g(1) - Q (coulombs), C - F (farads),
R = {1 (ohms), G = [} (mhos), L = H (henries).
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Time Domain — Laplace and
Frequency Domain Response of
LTICT

Dr. Raghad Al Najim



Frequency response of LTI system

Consider the stable, linear, time-invariant system shown in Figure
below. The input and output of the system, whose transfer function
is G(s) ,are x(t) and y(t). If the input x(t) is a sinusoidal signal, the
output will be a sinusoidal signal of the same frequency, but with
possibly different magnitude and phase angle.

Let us assume that the input signal is given by x(t)= A cos wt, and
the Laplace Transform of the Impulse response (Transfer Function
of the system) G(s), Then Y(s)= G(s) X(s).

The frequency response can be calculated by replacing s in the
transfer function by jw. It will also be shown that output will be
given by:

—e e Gljw) = Me? = M [/
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where M is the amplitude ratio of the output and input sinusoids
and ¢ is the phase shift between the input sinusoid and the output
sinusoid. In the frequency-response test, the input frequency wis
varied until the entire frequency range of interest is covered.

Thus G(jw) which is a complex quantity is written by the following
form:

G(jw) = |G(jw)|e'

_ . [ imaginary part of G[jw}]
= E = { 1 [
¢ = [G{jw) = tan real part of G(jw)
Glio)l = Yijw) _ amplitude ratio of the output sinuisoid to the
et |J:'-.‘_ju.-} mput sinusoid
1Glio) = J¥(jw)  phase shift of the output sinusoid with respect

- f X{jw) tothe input sinusoid
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Example 1: Consider the system shown .The transfer
function G(s) is

T_Ii.._l_ 1 Ts+ 1
(5)

Substituting jw for s in G(s) yields

K : K _ N -
Gl jw) = T ¥ 1 Gljw)| = Ny $ = /Gjw) = —tan™' Tw

Thus, for the input x(t) = X sin wt, the steady-state output y(t) can
be obtained from Equation

XK
V1 + Ta?

sin{ewt — tan™ Tw)
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Example 2: Consider the RC cct shown, find and plot its

frequency response o

¥(1)
X(t)=Vv, (), y(t)=v,(t) o
v (t)=1(t)R+v_ (t); Taking Laplace
1(s)=CsV_(s)
V. (s)=RCsV_(s)+V_(s)
V. (s)=(RCs+1)V (s)
V(s) 1 _Y(s)
V.(s) RCs+1 X(s)

1
RC jw+1

x(#)y= Acos{ax + &)

G(jw)=H(Jjw)=

For 1/RC= 1000



RL1 ) Ak R LAl

Lt o

[0 21K il ) REE
Frsgueeos irndioe:|
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H(100) = 0.995¢~/°%7 | x() = cos(100r) + cos(30001)

H(3000)=0.316e% |« il

x(l)

ittt |
Il Il
-EL* 005 o 0.05 0.1
Time (58c)
2 - v - |
ir ]
£ of ]
=1
B 005 2 0.05 0.1
Time [sec)

1(£) =0.995 cos(1007 — 0.097)
+0.316c0s(30007 —1.249)
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Example 3 : Solving a First Order ODE

Calculate the response of a CT LTI system with impulse response:
h(t) = e™u(t) b>0

to the input signal:
X(t)=e®ut) a>0

Taking Fourier transforms of both signals:

| 1 |
H(jw) = bt i’ X(jw) = at o

gives the overall frequency response:
Y(jw) =

(b+ jw)(a+ jw)
to convert this to the time domain, express as partial fractions:
: 1 1 1 assume
Y(jw) = — : bZa
b-al(at+jw) b+ jw)
Therefore, the CT system response is:

y(t) = - (€ u(t) -e™u(t))




First order Low Pass Filters:

o—o /1 0
v, Z
i 4t 4
W 77 Vo
Where Z=impedance =V/I
G O
1
If Z, is a resistor and Z, is a capacitor then Vo__sc _ 1
v, 1. 1+sCR
sC
A 1 B 1
V| L+sCR| |1+ jaCR \]12+(QCR}2

If Z, is an inductor and Z, is a resistor another low pass structure
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This is obviously a low pass filter-LPF (i.e., low frequency signals
are passed and high frequency signals are blocked).

If w<<1/RC then wCR<<1 and the magnitude of the gain is
approximately unity, and the output equals the input.

If w>>1/RC (wCR>>1) then the gain goes to zero, as does the
output.

At w=1/RC, called the break frequency (or cutoff frequency, or
3dB frequency, or half-power frequency, or bandwidth), the
magnitude of the gain is 1/sqrt(2).

In this case (and all first order RC circuits) high frequency is
defined as w>>1/RC; the capacitor acts as a short circuit and all
the voltage is across the resistance.

At low frequencies, w<<1/RC, the capacitor acts as an open
circuit and there is no current (so the voltage across the resistor
is near zero).
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First order High Pass filter

If Z, is a capacitor and Z, is a resistor we can repeat the calculation:
v, R sCR

v, 1.5 1+sCR
sC

Vol

SCR
1+ 5CR

jaCR | aCR

4 1+ jaCR \]12 +(aCR)?

I

At high frequencies, w>>1/RC, the capacitor acts as a short and the
gain is 1 (the signal is passed).

At low frequencies, w<<1/RC, the capacitor is an open and the
output is zero (the signal is blocked).

This is obviously a high pass structure and you can show that the
break frequency is again 1/RC.

If Z, is a resistor and Z, is an inductor the resulting circuit is high
pass with a break frequency of R/L.
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ldeal filters

One of the most basic operations in any signal processing system is
filtering. Filtering is the process by which the relative amplitudes of
the frequency components in a signal are changed or perhaps some
frequency components are suppressed. As we saw in the preceding
section, for continuous-time LTI systems, the spectrum of the output is
that of the input multiplied by the frequency response of the system.
Therefore, an LTl system acts as a filter on the input signal. Here the
word "filter" is used to denote a system that exhibits some sort of
frequency-selective behavior.

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at
one set of frequencies and completely rejects the rest. The band of
frequencies passed by the filter is referred to as the pass band, and the
band of frequencies rejected by the filter is called the stop band.

The most common types of ideal frequency-selective filters are the
following Dr. Raghad Al Najim 42



|
H =
H{w)l |0 lew| = o,

1. Ideal Low-Pass Filter:

An ideal low-pass filter (LPF) is
specified by

which is shown in Fig. below (a). The frequency weg, is called the cutoff
frequency.

2. Ideal High-Pass Filter:

lu | '-':r.r.l-l.

0 | < w,
An ideal high-pass filter (HPF) is specified LH ()] = ] 'L:I : ::
l >
by which is shown in Fig. (b).
3. Ideal Bandpass Filter: | |
An ideal bandpass filter (BPF) is specified  [H({w])l = [ we lm. -
by 'I_ [l otherwise
which is shown in Fig. (c).
4. Ideal Bandstop Filter: |H(w)| = [0 o Im.:' .
I|_ | otherwise

An ideal bandstop filter (BSF) is defined as
which is shown in Fig. (d).
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Figure (6.1), Magnitude responses of ideal frequency-selective filters
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B. Non-ldeal Frequency-Selective Filters:
As an example of a simple continuous-time causal, frequency-selective

filter, we consider the RC —LPF shown in figure(4.2). The output y(t)
and the input x(t) are related By:

e (1)

dr

+y(r)=x(r)

Taking the Fourier transforms of both sides of the above equation,
the frequency response H(w) of the RC filter is given by

¥a) l |

Alw)=——m= ; - =
Xlw) 1+ jwRC | + jw Sy

where wo = 1/RC. Thus, the amplitude

] |
}T'{wl'l ; — 17

+_|I.|:.|_.|___."._|.I_I [] + (s m“].

”.h" o P = —l1an _ Dr. Raghad Al Najim 45
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Fig. 4.2 : RC filter and its frequency response.
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Table (3): FT pairs for some functions and signals

Time domain

Frequency domain

g o
| . .
CT signals x(t) = e f X (w)e!™ dt Xiew) = f x(t)e ™ df
2
—oC —io0
(1) Constant | 2 &{ew)
(2) Impulse function d(r) 1
|
(3) Unit step function uir) Tiw) + —
jew
I
(4) Causal decaying e "ult) -
exponential function a1
2a
(5) Two-sided decaying &5 - -
exponential function @ rar
|
(6) First-order time-rising te " u(t) e
causal decaying (@ + jw)

exponential function

Dr. Raghad Al Najim
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(7) Nth-order time-rising
causal decaying
exponential function

(8) Sign function
(9) Complex exponential
(10} Penodic cosine function

(11) Periodic sine function

(12) Causal cosine function

(13) Causal sine function

(14) Causal decaying
exponential cosine
function

(15) Causal decaying

e u(t)

t =0

BHI= et 2.0

fout
cos{ayl )

sinfengt )
cos{wgl Ju(t)

sin{eogf )il )

e " cos(wpt Jult)

e sin(wql Ju(r)

exponential sine function
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(a + juy+!
2

Jew

2 8w — )

T[Sl — ) + (0 + ang )]
7T
_T[E{fu — g ) — Al 4 g )]

i3 Jew
= [8(er — eop ) + Sl 4 g )] + —
2 G — -
T (e
= 8@ — o) = (o + wo)] + ———
] Wy —
a -+ jew
(@ + jw) + ag
[y
(a + jew)t + g
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