Information Systems Security

Lecture 4

Asymmetric cryptography
Dr. En. Bader Ahmad

references

- [1] K. Martin's Lecture (www.rhul.ac.uk).
- [2] Cryptography and Network Security, By W. Stallings. Prentice Hall, 2003.
- [3] Handbook of applied Cryptography by A. Menezes, P. Van Oorschot and S. Vanstone. 5th printing, 2001 http://www.cacr.math.uwaterloo.ca/hac
- [4] Cryptography: A Very Short Introduction (Very Short Introduction S.), by <u>Fred Piper</u> and <u>Sean Murphy</u>, Oxford University Press, 2002.

Outline

- 1. Basic mathematical concepts
- 2. Public key cryptography
- 3. OWF
- 4. RSA
- 5. ElGamal

1. The modulo operation

Definition

- Let a, r, n be integers and let q > 0
- We write $a \equiv r \mod n$ if n divides a r (or r a) and $0 \le r < n$
- *n* is called the *modulus*
- r is called the remainder
 - \blacksquare Note that r is positive or zero
- Note that $a = n \cdot q + r$ where q is another integer (quotient)
- Example: $42 \equiv 6 \mod 9$
 - -9 divides 42 6 = 36
 - 9 also divides 6 42 = -36
 - Note that 42 = 9x4 + 6
 - $\blacksquare (q=4)$

Number Theory

- Natural numbers $N = \{1, 2, 3, ...\}$
- Whole numbers $W = \{0, 1, 2, 3, ...\}$
- Integers $Z = \{..., -2, -1, 0, 1, 2, 3, ...\}$
- Divisors
 - A number b is said to divide a if a = mb for some m where $a, b, m \in \mathbb{Z}$
 - We write this as b|a
 - Read as "b divides a"

Divisors

Some common properties

- If a|1, a = +1 or -1
- If a|b and b|a then a = +b or -b
- Any $b \in \mathbb{Z}$ divides 0 if $b \neq 0$
- If b|g and b|h then b|(mg + nh) where $b, m, n, g, h \in \mathbb{Z}$

Examples:

- The positive divisors of 42 are 1,2,3,6,7,14,21,42
- $-3|6 \text{ and } 3|21 \Rightarrow 3|21 \text{ m+6} \text{ n for } m,n \in \mathbb{Z}$

Prime Numbers

- An integer *p* is said to be a prime number if its only positive divisors are 1 and itself
 - Examples 2, 3, 7, 11, ...
- Any integer can be expressed as a *unique* product of prime numbers raised to positive integral powers
 - $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$ //n: ingterger, p_i:prime, e_j: positive integer
- Examples
 - $-7569 = 3 \times 3 \times 29 \times 29 = 3^2 \times 29^2$
 - $-5886 = 2 \times 27 \times 109 = 2 \times 3^3 \times 109$
- This process is called *Prime Factorization*

Greatest common divisor (GCD)

- Definition: *Greatest Common Divisor*
 - This is the largest divisor of both a and b
- Given two integers *a* and *b*, the positive integer *c* is called their GCD or greatest common divisor if and only if
 - $-c \mid a \text{ and } c \mid b$
 - Any divisor of both a and b also divides c
- Notation: gcd(a, b) = c
- Example: gcd(49,63) = ?
- \blacksquare $gcd(a,b)=gcd(b, a \mod b)$
- Exception: gcd(0,0)=0

Relatively Prime Numbers

- Two numbers are said to be *relatively prime* if their *gcd* is 1
 - Example: 63 and 22 are relatively prime
- How do you determine if two numbers are relatively prime?
 - Find their gcd or
 - Find their prime factors
 - If they do not have a common prime factor other than 1, they are relatively prime
 - Example: $63 = 9 \times 7 = 3^2 \times 7$ and $22 = 11 \times 2$

Modular Arithmetic Again

- We say that $a \equiv b \mod m$ if $m \mid a b$
 - Read as: a is congruent to b modulo m
 - m is called the modulus
 - Example: $27 \equiv 2 \mod 5$
- Note that *b* is the *remainder* after dividing *a* by *m*
 - Example: $27 \equiv 2 \mod 5$ and $7 \equiv 2 \mod 5$
- $a \equiv b \mod m \Rightarrow b \equiv a \mod m$
 - Example: $2 \equiv 27 \mod 5$
- We usually consider the *smallest positive remainder* which is sometimes called the *residue*

Modulo Operation

- The modulo operation "**reduces**" the infinite set of integers to a finite set
- Example: modulo 5 operation
 - We have five sets

```
\blacksquare {...,-10, -5, 0, 5, 10, ...} => a \equiv 0 \mod 5
```

$$\{...,-9,-4,1,6,11,...\} => a \equiv 1 \mod 5$$

$$\blacksquare$$
 {...,-8, -3, 2, 7, 12,...} => $a \equiv 2 \mod 5$

$$\{..., -7, -2, 3, 8, 13, ...\} => a \equiv 3 \mod 5$$

$$\blacksquare$$
 {...,-6, -1, 4, 9, 14...} => $a \equiv 4 \mod 5$

- The set of residues of integers modulo 5 has five elements $\{0,1,2,3,4\}$ and is denoted \mathbb{Z}_5 .

Euler phi (or totient) function

- For $n \ge 1$, $\phi(n)$: is the number of integers in [1,n] which are relatively prime to $n // \phi(n)$ is the *Euler phi* or *totient function*
- If *p* is prime, then $\phi(p)=p-1$
- If gcd(m,n)=1, then $\phi(mn)=\phi(m).\phi(n)$
- Examples:
 - $-\phi(21)=\phi(3).\phi(7)=(3-1)*(7-1)=12$

multiplicative group **Z**_n*

- Definition: the *multiplicative group* Z_n^* of Z_n
 - $-Z_n^* = \{a \in Z_n \mid gcd(a,n)=1\}$
 - If *n* is prime then $Z_n^* = \{a \in Z_n \mid 1 \le a \le n-1\}$
 - $-\phi(n)=|Z_n^*|$
- Let $n \ge 2$ be an integer
 - Euler's theorem: If $g \in Z_n^*$ then $g^{\phi(n)} \equiv 1 \pmod{n}$
 - If *n* is a product of distinct primes, and if $r \equiv s \mod (\phi(n))$, then $g^r \equiv g^s \pmod{n}$ for all integers g
 - *i.e.*, when working modulo an n, exponents can be reduced modulo $\phi(n)$

multiplicative group **Z**_n*

■ Let *p* be a prime nubmer

- Fermat's theorem: If gcd(a,p)=1, then $g^{p-1} \equiv 1 \pmod{p}$
- If $r \equiv s \mod (p-1)$, then $g^r \equiv g^s \pmod{p}$ for all integers g
 - *i.e.*, when working modulo a prime *p*, exponents can be reduced modulo *p-1*
- Particular case: $g^p \equiv g \pmod{p}$ for all integers g

Generator of Z_n^*

- Let $g \in \mathbb{Z}_n^*$, the *order* of g is the least positive integer t such that $g^t \equiv 1 \mod n$
- If the order of $g \in \mathbb{Z}_n^*$ is t, and $g^s \equiv 1 \pmod{n}$, then t divides s
 - A particular case: $t | \phi(n)$
- Let $g \in Z_n^*$, if the order of g is $\phi(n)$, then g is said to be a *generator* or a *primitive element* of Z_n^* .
 - If g is a generator of Z_n^* , then $Z_n^* = \{g^i \mod n \mid 0 \le i \le \phi(n) 1\}$

2. Public-key cryptography

- Called also *asymmetric cryptography*
- The keys used to encrypt and decrypt are different.
- Anyone who wants to be a receiver needs to "publish" an encryption key, which is known as the *public key, KU*.
- Anyone who wants to be a receiver needs a unique decryption key, which is known as the *private key, KR*.
- If B wants to send an enciphered text to A, B should knows *the* encryption algorithm and A's public key.

Confidentiality via Public key cryptography

- Alice wants to send a secret message *m* to Bob
- Bob should have 2 keys: public KU_b and private KR_b
- Prior to message encryption, <u>Alice gets by some means an</u> authentic copy of Bob's public key (*i.e.*, the encryption key)

Public-key cryptography

- It should not be possible to deduce the plaintext from knowledge of the ciphertext and the public key.
- It should not be possible to deduce the private key from knowledge of the public key.
- Public-key cryptography is based on *One-Way Functions*

3. One-Way Functions (OWF)

- A **one-way function** is a function that is "easy" to compute and "difficult" to reverse
- Examples of OWF that we'll use in this lecture to explain publickey systems:
 - Multiplication of two primes
 - Modular exponentiation

OWF: Multiplying two primes

■ Multiplication of two prime numbers is **believed** to be a one-way function.

- \blacksquare Given two prime numbers p and q
 - It's easy to find n=p.q
 - However, starting from n, it's difficult to find p and q
- Is it prime factorization?

OWF: Modular exponentiation

- The process of *exponentiation* just means raising numbers to a power.
- Raising *a* to the power *b*, normally denoted *a*^{*b*} just means multiplying *a* by itself *b* times. In other words:

$$a^b = a \times a \times a \times \dots \times a$$

- *Modular exponentiation* means computing a^b modulo some other number n. We tend to write this as $a^b \mod n$.
- Modular exponentiation is "easy".

OWF: Modular exponentiation

- However, given a, and a^b mod n (when n is prime), calculating
 b is regarded by mathematicians as a hard problem.
- This difficult problem is often referred to as the discrete logarithm problem.
- In other words, given a number *a* and a prime number *n*, the function

$$f(b) = a^b \mod n$$

is believed to be a one-way function.

4. RSA

■ It is named after it inventors Ron Rivest, Adi Shamir and Len Adleman.

- Published in 1978
- It is the most widely used public-key encryption algorithm today.
- It provides confidentiality and digital signatures.
- Its security is based on the difficulty of integer factorization

RSA algorithm (key generation for RSA public-key encryption)

- Each entity A creates a public key and a corresponding private key by doing the following
 - Generate two large (at least 1024 bits) primes p and q
 - Compute n=pq and $\phi(n)=(p-1)(q-1)$.
 - Choose $e < \phi$ relatively prime to ϕ (i.e., gcd (e, ϕ)=1)
 - Compute d such that ed mod $\phi(n) \equiv 1$
- A's Public key: (e, n) // to be published.
- A's private key: d(or(d, n)) // to be kept secretly by A
- Who is capable of computing d?

RSA Encryption/decryption

- Summary: B encrypts a message *m* for A. Upon reception, A decrypts it using its private key.
- Encryption: B should do the following
 - Obtain A's authentic public key (n,e).
 - Represent the message as an integer in the interval [0,n-1]
 - Compute $c = m^e \mod n /\!\!/ Encryption$
 - Send the ciphertext c to A
- Decryption: to recover plaintext m from c, A does the following
 - Use the private key d to recover $m = c^d \mod n /\!/ \underline{\text{Decryption}}$
- How does B obtain A's authentic key?

Example: confidentiality

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Say Bob chooses (KU_b) e = 17, making (KR_b) d = 53
 - $-17 \times 53 \mod 60 = ?$
- Alice wants to secretly send Bob the message HELLO [07 04 11 11 14]
 - $-07^{17} \mod 77 = 28$
 - $-04^{17} \mod 77 = 16$
 - $-11^{17} \mod 77 = 44$
 - $-11^{17} \mod 77 = 44$
 - $-14^{17} \mod 77 = 42$
- Alice sends ciphertext [28 16 44 44 42]

Example: confidentiality

- Bob receives [28 16 44 44 42]
- Bob uses private key (KR_b) , d = 53, to decrypt the message:
 - $-28^{53} \mod 77 = 07$ H
 - $-16^{53} \mod 77 = 04$ E
 - $-44^{53} \mod 77 = 11$ L
 - $-44^{53} \mod 77 = 11$ L
 - $-42^{53} \mod 77 = 14$ O
- No one else could read it, as only Bob knows his private key and that is needed for decryption

Attacking RSA

- 1. Trying to decrypt a ciphertext without knowledge of the private key
 - The encryption process in RSA involves computing the function $c = m^e \mod n$, which is regarded as being easy
 - An attacker who observes this ciphertext c, and has knowledge of e and n, needs to try to work out what m is.
 - *i.e.*, find m such that $m^e = c \mod n$
 - In other words, find the e^{th} root of $c \mod n$
- Computing m from c, e and n is regarded as a hard problem and known as RSA problem.

Attacking RSA

- 2. If the attacker knows the public key of a user (e,n), what would she/he need to do in order to obtain the corresponding private key?
 - He/she needs to find d such that ed mod $\phi(n) = 1$
 - \blacksquare *i.e.*, needs to know p and q
 - \blacksquare In other words, he/she must factor n (problem of prime factorization)
- Recommended size of n:
 - 768-bit is recommended
 - 1024-bit or larger is required for long term security
 - it is believed that factoring a 512 bit number is about as hard as searching for a 56 bit symmetric key.

5. El Gamal

- ElGamal is another public-key encryption
- We will also take a look at the ElGamal public key cipher system for a number of reasons:
 - To show that RSA is not the only public key system
 - To exhibit a public key system based on a different one way function
 - ElGamal is the basis for several well-known cryptosystems

ElGamal algorithm (key generation)

- Key generation for ElGamal public-key encryption
- Each entity A creates a public key and a corresponding private key.
 - Generate a large prime number p (1024 bits)
 - Generate a generator g of the multiplicative group Z_p^* of the integers modulo p
 - Select a random integer x, $1 \le x \le p-2$
 - Compute $y = g^x \mod p$
 - A's public key is (p, g, y)
 - To be published
 - A's private key is x
 - To be kept secret by A

ElGamal algorithm (key generation)

- Example
- Step 1: Let p = 2357
- Step 2: Select a generator g = 2 of Z_{2357}^*
- Step 3: Choose a private key x = 1751
- Step 4: Compute $y = 2^{1751} \pmod{2357}$ = 1185
- Public key is (2357,2,1185)
- Private key is 1751

ElGamal algorithm (Encryption/decryption)

- Summary: B encrypts a message *m* for A, which A decrypts
- Encryption: B should de the following
 - Obtain A's authentic public key (p, g, y).
 - Represent the message as an integer in the interval [0,p-1]
 - Select an integer k, $1 \le k \le p-2$
 - Compute $\gamma = g^k \mod p$ and $\delta = m.(y)^k \mod p$
 - Send the ciphertext $c = (\gamma, \delta)$ to A
- Decryption
 - A uses the private key x to compute $z = \gamma^{p-1-x} \mod p$
 - A computes $z.\delta mod p (=m)$

ElGamal algorithm (Encryption/decryption)

Encryption

- To encrypt m = 2035 using Public key (2357,2,1185)
- Generate a random number k = 1520
- Compute $\gamma = 2^{1520} \mod 2357 = 1430$ $\delta = 2035 \times 1185^{1520} \mod 2357 = 697$
- Ciphertext c = (1430, 697)

Decryption

- $-z = \gamma^{p-1-x} \mod p = 1430^{605} \mod 2357 = 872$
- $-872 \times 697 \mod 2357 = 2035$

ElGamal Properties

- There is a *message expansion* by a factor of 2
 - i.e., the ciphertext is twice as long as the corresponding plaintext
- Requires a random number generator (k)
- Relies on discrete algorithm problem, *i.e.*, having $y=g^x$ mod p it's hard to find x (the private key)
- ElGamal encryption is randomized (coming from the random number k), RSA encryption is deterministic.
- ElGamal is the basis of many other algorithms (*e.g.*, DSA)

Summary

- RSA is a public key encryption algorithm whose security is believed to be based on the problem of factoring large numbers.
- ElGamal is a public key encryption algorithm whose security is believed to be based on the discrete logarithm problem.
- RSA is generally favoured over ElGamal for practical rather than security reasons.
- RSA and ElGamal are <u>less efficient and fast</u> to operate than most symmetric encryption algorithms because they involve modular exponentiation.
 - Public key cryptography confined to key management and signature applications.

