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1. The modulo operation

m Definition
— Let g, r, nbe integersand let ¢> 0
— We write a= rmod nif ndivides a— r(or r—a@ and0<r<n
— nis called the modulus

— ris called the remainder
m Note that ris positive or zero

— Note that a= n.g+ rwhere g is another integer (quotient)

m Example: 42=6 mod 9
— 9divides 42 -6 =36
— 9also divides 6 - 42 = -36
— Note that 42=9x4 + 6
= (g=4)



Number Theory

Natural numbers N={1,23,...}
Whole numbers W ={0123, ...}
Integers 2 =¢{...,-2,-1,0,1,2,3, ...}

Divisors
— A number bis said to divide aif a= mb for some m where a6,m € Z

— We write this as Ha
m Read as “bdivides a”



Divisors

m SOome common properties
— If 41, a=+1lor-1
— If 4band Hathen a=+bor—b
— Any be Z divides 0 if b= 0
— If Hlgand HAathen HB(mg + nh) where b,m,n,g,h e Z

m Examples:
— The positive divisors of 42 are 1,2,3,6,7,14,21,42
— 3|6 and 3|21 => 3|21m+6nfor mne Z



Prime Numbers

m An integer pis said to be a prime number if its only positive
divisors are 1 and itself

— Examples 2, 3, 7, 11, ..

m Any integer can be expressed as a uni/que product of prime
numbers raised to positive integral powers

— N=pL1pSL2. Pk //N:Ingterger, p;:prime, e : positive integer

m Examples

— 7569 =3x3x29x29=3%x29°
— 5886 =2x27x109=2x3%x 109

m This process is called Prime Factorization



Greatest common divisor (GCD)

m Definition: Greatest Common Divisor
— This is the largest divisor of both aand b

m Given two integers aand b, the positive integer cis called their
GCD or greatest common divisor if and only if

— claand c| b
— Any divisor of both 2and 6 also divides ¢

m Notation: gca(a, b) =c
m Example: gca(49,63)="?

m gca(ab)=gca(b, a mod b)
m EXxception: gca(0,0)=0



Relatively Prime Numbers

m Two numbers are said to be re/atively prime if their gcd'is 1
— Example: 63 and 22 are relatively prime

m How do you determine if two numbers are relatively prime?
— Find their gcd or

— Find their prime factors

m |f they do not have a common prime factor other than 1, they are relatively
prime

— Example: 63=9x7=3?x7and22=11x2



Modular Arithmetic Again

m Wesaythat a= bmod mift m|a—»b
— Read as: ais congruentto 6 modulo m
— mis called the moaulus
— Example: 27 =2 mod 5

m Note that b is the remainder after dividing aby m
— Example: 27=2mod 5and 7 =2 mod 5

m g=bmod m=>b=amod m
— Example: 2 =27 mod 5

m \We usually consider the smallest positive remarnder which is
sometimes called the resiaue
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Modulo Operation

m The modulo operation “reduces” the infinite set of integers to a
finite set

m Example: modulo 5 operation

— We have five sets

m {...,-10,-5,0,5,10,...} ==a=0mod 5
{...,-9,-4,1,6,11,...} =>a=1mod>5
{...,-8,-3,2,7,12,...} =a=2mod5
Lo
{.

7,-2,3,8,13,...} =>a=3mod5
-6 -1,4,9,14...} =a=4mod>5

— The set of residues of integers modulo 5 has five elements {0,1,2,3,4} and
IS denoted Z;.
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Euler phi (or totient) function

m For n>1, ¢(n): is the number of integers in [ Z,n] which are
relatively prime to n /7 ¢(n) s the Euler phior totient function

m If pis prime, then ¢(p)=p-1

m If gca(m,n)=1, then ¢(mn)= g(m).¢(n)

m Examples:
— $CD=¢3).9(7) = (3-1) *(7-1) =12
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multiplicative group Z_*
‘-—Definition: the multiplicative group Z,” of Z,

— Z ={aeZ | gcd(an)=1}

— If nis prime then Z"=faeZ | 1 <a<n-1}

I ¢(/7):|an

m Let n> 2 be an integer
— Euler’s theorem: If g € Z,"then g?™ =1 (mod n)

— If nis a product of distinct primes, and if r=s mod (¢(n)),
then ¢ =g° (mod n)for all integers g

— /.., when working modulo an 7, exponents can be reduced
modulo ¢(n)
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multiplicative group Z_*

m Let pbe a prime nubmer
— Fermat’s theorem: If gcad(a p)=1, then g°* =1 (mod p)
— If r=smod (p-1), then g" = g° (mod p) for all integers
g

m /.., when working modulo a prime p, exponents can be
reduced modulo p-7

— Particular case: ¢° = g (mod p) for all integers g
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Generator of Z,”

m Let g € Z7, the orderof gis the least positive integer £such that
=1 moan

m If the order of g € Z7is ¢ and g°=1 (mod n), then tdivides s
— A particular case: 4¢(n)

m Let g e Z7, if the order of gis ¢(n), then gis said to be a
generator or a primitive elementof Z .
— If gis agenerator of Z°, then Z,"={g' mod n| 0 <i<¢(n) -1}
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2. Public-key cryptography

m Called also asymmetric cryptography

m The keys used to encrypt and decrypt are different.

m Anyone who wants to be a receiver needs to “publish” an
encryption key, which is known as the KU.

m Anyone who wants to be a receiver needs a unique decryption
key, which is known as the KR.

m If B wants to send an enciphered text to A, B should knows /e
encryption algorithm and A’s public key.
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Confidentiality via Public key
cryptography

m Alice wants to send a secret message /mto Bob
m Bob should have 2 keys: public KU, and private KR,

m Prior to message encryption, Alice gets by some means an
authentic copy of Bob’s public key (/.&., the encryption key)

Ciphertext
Message ST : Message
Decryption Source

KR,

[




Public-key cryptography

m |t should not be possible to deduce the plaintext from knowledge
of the ciphertext and the public key.

m It should not be possible to deduce the private key from
knowledge of the public key.

m Public-key cryptography is based on One-Way Functions
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3. One-Way Functions (OWF)

m A is a function that is “easy’ to compute and
“difficult” to reverse

m Examples of OWF that we’ll use 1n this lecture to explain public-
key systems:

— Multiplication of two primes
— Modular exponentiation
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OWF: Multiplying two primes

m Multiplication of two prime numbers is to be a one-way
function.

m Given two prime numbers pand g
— It’s easy to find n=p.q
— However, starting from n, it’s difficult to find pand g

m Is it prime factorization?
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OWF: Modular exponentiation

The process of just means raising numbers to a
power.

Raising 2 to the power ©, normally denoted #” just means
multiplying # by itself £ times. In other words:
=axaxax..x

means computing #” modulo some
other number /7. We tend to write this as

Modular exponentiation 1s “easy’’.

21



OWF: Modular exponentiation

m However, given 7, and (when /71s prime), calculating
IS regarded by mathematicians as a hard problem.

m This difficult problem is often referred to as the

m In other words, given a number = and a prime number /7, the
function

IS believed to be a one-way function.
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4. RSA

m |t I1s named after it inventors Ron Rivest, Adi Shamir and Len
dleman.

m Published in 1978
m It is the most widely used public-key encryption algorithm today.
m It provides confidentiality and digital signatures.

m |ts security iIs based on the difficulty of integer factorization
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RSA algorithm (key generation for
RSA public-key encryption)

m Each entity A creates a public key and a corresponding private
key by doing the following

— Generate two large (at least 1024 bits) primes pand g
— Compute n=pgand ¢(n)=(p-1)(q-1).

— Choose e< grelatively prime to ¢ (7.e., gcd (e, ¢)=1)
— Compute d'such that ed mod ¢(n) = 1

m A’s Public key: (¢, n) // to be published.
m A’s private key: d(or(ad, n)) I/ to be kept secretly by A

m Who is capable of computing a?
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RSA Encryption/decryption

m Summary: B encrypts a message / for A. Upon reception, A
decrypts it using its private key.

m Encryption: B should do the following
— Obtain A’s authentic public key (77,&).
— Represent the message as an integer in the interval [0,n-1]

— Compute ¢= m° mod 77/ Encryption
— Send the ciphertext c to A

m Decryption: to recover plaintext /2 from ¢, A does the following
— Use the private key d'to recover /m = ¢? mod 7/ Decryption

m How does B obtain A’s authentic key?
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Example: confidentiality

m Take p=7,g=11,s0 n=77 and ¢(n)= 60
m Say Bob chooses (KU,) e= 17, making (KR,) d= 53
— 17 x53 mod 60 =?
m Alice wants to secretly send Bob the message HELLO [07 04 11
11 14]
— 07" mod 77 = 28
— 04" mod 77 =16
— 11 mod 77 = 44

~ 11 mod 77 = 44
— 14" mod 77 = 42

m Alice sends ciphertext [28 16 44 44 42]
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Example: confidentiality

m Bob receives [28 16 44 44 42]

m Bob uses private key (K%,), d= 53, to decrypt the message:
— 28°*mod 77 =07 H
— 16 mod77=04 E
— 443 mod77=11 L
— 443 mod77=11 L
— 42°°mod77=14 O

m No one else could read it, as only Bob knows his private key and
that is needed for decryption
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Attacking RSA

‘ 1. Trying to decrypt a ciphertext without knowledge of
the private key

— The encryption process in RSA involves computing the
function ¢ =m?mod 7, which is regarded as being easy

— An attacker who observes this ciphertext ¢, and has
knowledge of eand 7, needs to try to work out what mis.

— 1.e, find msuch that m?¢ =c¢c mod n
— In other words, find the ¢ root of ¢ mod 7

m Computing mfrom ¢, eand n1s regarded as a hard
problem and known as RSA problem.
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Attacking RSA

If the attacker knows the public key of a user (e,n), what would
she/he need to do in order to obtain the corresponding private
key?

B He/she needs to find d'such that ed mod ¢(n) = 1

B /e, needsto know pand g

B In other words, he/she must factor /7 (problem of prime factorization)

Recommended size of n:
— 768-bit Is recommended
— 1024-bit or larger is required for long term security

— it is believed that factoring a 512 bit number is about as hard as searching
for a 56 bit symmetric key.
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5. El Gamal

m ElGamal is another public-key encryption

m \We will also take a look at the EIGamal public key cipher system
for a number of reasons:
— To show that RSA is not the only public key system
— To exhibit a public key system based on a different one way function
— ElGamal is the basis for several well-known cryptosystems
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ElGamal alg()rithm (key generation)

m Key generation for EIGamal public-key encryption

m Each entity A creates a public key and a corresponding private
key.
— Generate a large prime number p (1024 bits)

— Generate a generator g of the multiplicative group Z,” of the integers
modulo p

— Select a random integer x, I <x <p-2
— Compute y =g* mod p
— A’s publickey is (p, g, V)
m To be published
— A’s private key 1s X
m To be kept secret by A
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ElGamal alg()rithm (key generation)

Example
Step 1: Let p= 2357

Step 2: Select a generator g=2 of Z,,:,
Step 3: Choose a private key x= 1751

Step 4: Compute y= 21 (mod 2357)

Public key Is
Private key Is 1751
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ElGamal a Ig()rith M (Encryption/decryption)

m Summary: B encrypts a message /m for A, which A decrypts

m Encryption: B should de the following
— Obtain A’s authentic public key (p, g, V).
— Represent the message as an integer in the interval [0 p-1]
— Selectan integer k, I <k <p-2
— Compute y=g“ mod p and o=m.(y)* mod p

— Send the ciphertextc = (y, 5) o A

m Decryption

— A uses the private key xto compute z= X mod p
— A computes z.o modp (=m)
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ElGamal a IQOrith M (Encryption/decryption)

m Encryption
— To encrypt m= 2035 using Public key
— (Generate a random number k = 1520
— Compute y=2520mod 2357 =
0= 2035 x 1520 mod 2357 =

— Ciphertext ¢ = ( ,
m Decryption

— Z= y1*mod p = 1430°%> mod 2357 =872
— 872x697 mod 2357 = 2035
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ElGamal Properties

m There Is a message expansion by a factor of 2
— I.e., the ciphertext is twice as long as the corresponding plaintext

m Requires a random number generator (k)

m Relies on discrete algorithm problem, 7.e., having V="
mod pit’s hard to find x (the private key)

m ElGamal encryption is randomized (coming from the random
number k), RSA encryption is deterministic.

m ElGamal is the basis of many other algorithms (e.g., DSA)
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Summary

m RSA is a public key encryption algorithm whose security is
believed to be based on the problem of factoring large numbers.

m ElGamal is a public key encryption algorithm whose security is
believed to be based on the discrete logarithm problem.

m RSA is generally favoured over ElIGamal for practical rather than
security reasons.

m RSA and ElGamal are less efficient and fast to operate than most
symmetric encryption algorithms because they involve modular
exponentiation.

— Public key cryptography confined to key management and signature
applications. .







