بسم الله الرحمن الرحيم

دور التصنيف الصيدلاني الحيوي في تطوير الصنيف الصناعة الصبدلية

Role of Biopharmaceutical Classification System BCS in Developing Industrial Pharmacy

د. هند الزين قسم الصيدلانيات

ركائز التصنيف الصيدلاني الحيوي Pillars of the BCS

معدل الانحلال

النفوذية

الذوبانية

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)

Solubility

Class I: High solubility-High permeability

Class II: Low solubility-High permeability drugs

Class III: High solubility - Low permeability

Class IV: Low solubility-Low permeability drugs

Permeability

Biopharmaceutical Classification System

Class	solubility	permeability	comment
Class 1	High	High	Bioavailability problem is not expected for immediate release drug products
Class 2	Low	High	Bioavailability is controlled by the dosage form and rate of release of the drug substance.
Class 3	High	Low	Drug is permeability limited Bioavailability may be incomplete if the drug is not released and dissolved within absorption window.
Class 4	Low	Low	Difficulty in formulating a drug product that will deliver consistent drug bioavailability. An alternate route of administration may be needed.

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)

FDA BCS-BIOWAIVER GUIDANCE Dissolution

▶ Very rapidly dissolving $\geq 85\%$ within 15 min

- ▶ Rapidly dissolving $\geq 85\%$ within 30 min
- Slowly dissolving more than 30 min for 85% dissolution

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)

- ❖ The successful development of medicinal products for oral use requires identification of the rate limiting step(s) of the intestinal absorption process of the active substance
- ❖ 3 major factors govern drug absorption:
 - Aqueous solubility
 - Intestinal permeability
 - Dissolution

active substance active substance oral formulation

Biopharmaceutics Classification System

Class I: HS/HP Class II: LS/HP Peff (x 10⁻⁴)cm/sec RLS: Gastric emptying **RLS: Dissolution** IVIVG: No. WWC: Yes When dissolution rate > gastric amptying, dissolution is not likely to be rate limiting Examples: Verapamil, Proprancial, Ketoprofen, Naproxen Examples: Metoprotol Carbamazepine Class &: HS/LP Class (V; LS/LP) Permeability: RLS: Permeability RLS: Various fectors in vitro dissolution may not be reliable MVC: No IVIVC: Nay be. Examples: Rankidine, Cimetidine Examples: Furosemide, Hydrochlorothiszide Atendici 10 100 0 250 1000 10,000 må

Volume of equeous buffer needed to dissolve the highest unit dose, pH 1-8 errange.

RLS: Rate limiting Step.

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)

solubility, dissolution and permeability are the 3 major

factors controlling the oral absorption of drug substances from IR oral medicinal products

Enhancing dissolution profile تحسين مرتسم الانحلال

المبعثرات الصلبة solid dispersion

fig(12): percentage of nystatin released from tablets containing (1) nystatin plain powder, (2)nystatin :PEG6000 solid dispersion

K. Sakeer, H. Al-Zein, I. Hassn, G. P. Martin, and A. Nokhodachi. Pharmaceutical Development and Technology 2010,15(4) 360-368

تشكيل معقدات مع مشتقات السيكلو ديكسترين Complexation with cyclodextrin derivatives

تشكيل معقدات مع مشتقات السيكلوديكسترين

Figure (2): Percent dissolved of nicardipine as powder and inclusion complex with (HBβCD) prepared by kneading and rotatory evaporation in pH:6.8

H.Al-Zein et al, Saudi Pharmaceutical Journal 2011,19(4),245-253

النسبة المئوية المتحررة من الكانديزارتان سيلكسيتيل من أقراص:

- المبعثرات الصلبة (SD1:4)
- المعقدات الانضمامية (IC1:1)
- · الأنظمة السائلة الصلبة (LS) باستخدام محلول دوائي بتركيز (8%)
 - المستحضر التجاري العالمي (Atacand®)

IC1:1	SD1:4	LS	Atacand[®]	الزمن (دقيقة)
45.88±5.94%	49.74±4.91%	65.75±5.40%	16.46±3.18%	5
56.55±4.05%	65.47±3.55%	75.44±4.53%	27.30±2.55%	10
66.64±3.19%	78.37±3.10%	86.54±3.15%	48.54±2.30%	20
80.00±2.11%	83.91±2.33%	95.51±3.27%	68.98±1.97%	30
88.54±2.97%	91.98±1.57%	100.87±2.20%	86.80±0.50%	45
98.94±2.18%	98.60±0.81%	101.78±1.70%	99.94±2.18%	60

R. Al-Nus, H. El-Zein, Asian journal of Pharmaceutical and Clinical Research, vol 8, Issu 1, 2015.

تحسين معدل ذوبان الكانديسارتان

مرتسمات تحرر الكانديزارتان سيلكسيتيل من أقراص:

- المبعثرات الصلبة (SD1:4)
- المعقدات الانضمامية (IC1:1)
- الأنظمة السائلة الصلبة (LS) باستخدام محلول دوائي بتركيز (8%)
 - المستحضر التجاري العالمي ("Atacand)

R. Al-Nus, H. El-Zein, Asian journal of Pharmaceutical and Clinical Research, vol 8, Issu 1, 2015.

BIOPHARMACEUTICS CLASSIFICATION SYSTEM

API	BCS	API	BCS	API	BCS
Alprazolam	Class I	Clarithromycin	LS	Nimesulide	Class II
Amlodipine	Class I	Doxazocin	Class I	Nitrofurantoin	Class IV
Ascorbic Acid	Class III	Flurbiprofen	Class II	Penicilamine	Class III
Atorvastatin	Class II	Folic Acid	Class IV*	Simvastatin	Class II
Azithromycin	LS - Class II	Glipizide	Class II*	Terazocin	Class III
Celecoxib	Class II	Ibuprofen	Class II	Terbinafine	Class I
Cetirizine	<u>Class I</u>	Montelukast	Class I	Valsartan	Class II
<u>Levocetirizine</u>	Class I	Lomefloxacin	Class I	Lidocaine	Class I
Minocycline	Class I	Niacin	Class III	Pravastatin sodium	Class I

الاعفاء الحيوي المستند الى التصنيف الصيدلاني الحيوي

BCS BASED BIOWAIVERS

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)

- FDA Guidance for Industry: Immediate Release Solid Oral Dosage Forms: Scale-Up and Post-Approval Changes, November 1995.
- FDA Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Bio pharmaceutics Classification System, FDA, August 2000.

http://www.fda.gov/cder/guidance/cmc5.pdf http://www.fda.gov/cder/guidance/3618fnl.pdf

الأعفاء الحيوي Biowaiver

الاعفاء الحيوي هو قبول استبدال دراسات التكافؤ الحيوي في المختبر بالدراسات في الانسان.

Biowaiver is in vitro instead of in vivo 'bioequivalence' testing

الاعفاء الحيوي

FDA BCS-BIOWAIVER GUIDANCE Dissolution

- FDA criteria for BCS-based biowaiver:
 - BCS class I drug substances
 - Oral IR solid dosage form
 - Rapid in vitro dissolution and similar to **REFERENCE** product
 - Wide therapeutic window
 - Excipients should be FDA approved for IR solid dosage forms

مقارنة مرتسمات الانحلال

Dissolution Profile Comparison

USP Chapters <711>, <724>

USP apparatus

Apparatus 1	Rotating Basket	Capsules, Tablets
Apparatus 2	Paddle	Tablets, Capsules, modified drug products, suspensions
Apparatus 3	Reciprocating cylinder	Extended release drug products
Apparatus 4	Flow cell	Drug products containing low-water- soluble drugs
Apparatus 5	Paddle over disk	Transdermal drug products
Apparatus 6	Cylinder	Transdermal drug products
Apparatus 7	Reciprocating disk	Transdermal drug products
Diffusion Cells (Franz)	(Non-USP-NF)	Ointments, Creams, transdermal drug products

8 Feb. 2010

عامل التشابه Similarity Factor

$$f_2 = 50 \cdot \log \{ [1 + (1/n)\Sigma_{t=1}^{n} (R_t - T_t)^2]^{-0.5} \cdot 100 \}$$

عدد النقاط الزمنية = n

Rt = x النسبة المئوية الذائبة من المستحضر المرجعي عند النفطة الزمنية

Tt=x النسبة المؤية الذائبة من المستحضر المرجعي عند النفطة الزمنية

- ثلاث نقاط زمنية على الأقل 🔾
- 12 يجب العمل على 12 وحدة من المستحضرين ك
- قياس واحد فقط بعد الوصول الى 85% ذويان 🔍
- \triangleright RSD: $\leq 20\%$ at early time point $\& \leq 10\%$ at higher time points

EMA BE GUIDELINE 2010 APPENDIX III BCS-BASED BIOWAIVER

London, 20 January 2010

Doc. Ref.: CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP)

GUIDELINE ON THE INVESTIGATION OF BIOEQUIVALENCE

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline /2010/01/WC500070039.pdf

EMA BIOEQUIVALENCE GUIDELINE - 2010 solubility drug substance

- The pH-solubility profile of the drug substance should be determined and discussed.
- The drug substance is considered highly soluble if the <u>highest single dose administered</u> as immediate release formulation(s) is completely dissolved in 250 ml of buffers within the range of pH 1 − 6.8 at 37 ± 1 °C.

This demonstration requires the investigation in at least three buffers within this pH range (preferably at pH 1.2, 4.5 and 6.8)

EMA BIOEQUIVALENCE GUIDELINE - 2010 drug substance

- BCS-based biowaivers are applicable for IR drug products if:
 - 1. The drug substance has been proven to exhibit high solubility and complete absorption: **BCS-class I**,
 - 2. Either very rapid (>85% within 15 min) or similarly rapid (85% within 30 min) *in vitro dissolution characteristics of the test and* the reference product has been demonstrated considering specific requirements,
 - 3. Excipients that might affect bioavailability are qualitatively and quantitatively the same; in general the use of the same excipients in similar amounts is preferred.

EMA BIOEQUIVALENCE GUIDELINE - 2010 drug substance

- BCS-based biowaivers are also applicable for IR drug products if:
 - 1. The drug substance has been proven to exhibit high solubility and limited absorption: BCS-class III,
 - 2. Very rapid (>85% within 15 min) in vitro dissolution characteristics of the test and the reference product has been demonstrated considering specific requirements,
 - 3. Excipients that might affect bioavailability are qualitatively and quantitatively the same and other excipients are qualitatively the same and quantitatively very similar. 29

WHO BIOWAVIER GUIDELINES

© World Health Organization WHO Technical Report Series, No. 937, 2006

Annex 7

Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability

Annex 8

Proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms

http://healthtech.who.int/pq/info_general/documents/TRS937/WHO_TRS_937__annex7_eng.pdf http://healthtech.who.int/pq/info_general/documents/TRS937/WHO_TRS_937__annex8_eng.pdf

BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)*

- BCS Class 1: HS/HPVRD or RD in pH 1.2, 4.5 and 6.8
- BCS Class 2: LS/HP/Weak Acids
 -Rapid dissolution in pH 6.8 and similar dissolution profile in pH 1.2, 4.5 and 6.8
- BCS Class 3: HS/LP/VRD

For biowaivers Test (multisource) and Reference (comparator) products must have similar dissolution profile (f_2) in all 3 media

*Ref: WHO Technical Report Series, No. 937, 2006, Annex 7: Page: 347-390 and Annex 8: Page 391-438.

EMA BE guideline - 2010

المقادير الجرعية المختلفة

يجرى التكافؤ الحيوي على أعلى جرعة اذا كانت حركية الدواء خطية على أن تتوافر الشروط التالية:

1- طريقة التحضيرواحدة

2- السواغات المستخدمة نفسها

3-يوجد تناسب كمي بين مكونات الصيغة

4- نتائج مرتسمات الانحلال متشابهة

MULTIPLE DOSE STRENGTHS EMA BE guideline - 2010

•If several strengths of a test product are applied for, it may be sufficient to establish BE at only the highest strength,

•

• The strength(s) to evaluate depends on the linearity in pharmacokinetics of the active substance.

Comparative dissolution testing Similarity factor f2

$$f_2 = 50 \cdot \log \{ [1 + (1/n)\Sigma_{t=1}^{n} (R_t - T_t)^2]^{-0.5} \cdot 100 \}$$

n = number of time points

Rt= % API dissolved of reference product at time point x

Tt= % API dissolved of test product at time point x

- Minimum of 3 time points (zero excluded)
- ➤ 12 units (one / vessel) for each batch (for "official" purposes)
- Only one measurement should be considered after the reference product has reached 85 % dissolution.
- \triangleright RSD: $\leq 20\%$ at early time point $\& \leq 10\%$ at higher time points

Dissolution Profile Comparison

$$f_1 = \{ [\sum_{t=1}^n | R_t - T_t |]/[\sum_{t=1}^n R_t] \} \cdot 100$$

$$f_2 = 50 \cdot \log \{ [1 + (1/n) \sum_{t=1}^n (R_t - T_t)^2]^{-0.5} \cdot 100 \}$$

- R_i and T_i are the cumulative % dissolved at each of the selected n time points
- f, is proportional to the average difference between the two profiles (difference factor)
- f, is inversely proportional to the average squared difference between the two profiles and measures the closeness between the two profiles (similarity factor).

F1 between (0 – 15)
F2 between (50 – 100)

Comparative dissolution testing Dissolution conditions (study design)

Apparatus	• USP 2 - Paddle, 50 (75) rpm <u>or</u>				
(choice)	USP 1 - Basket, 100 rpm				
Dissolution media	1. Phosphate Buffer pH 6.8 <u>or</u> simulated intestinal fluid without enzymes				
All three media for full	2. Acetate Buffer pH 4.5				
comparison	3. 0.1 M HCl <u>or</u> buffer pH 1.2 <u>or</u> simulated gastric fluid without enzymes				
Volume of media	900 ml or less				
Temperature	37°C ± 0.5°C				
Sampling points	10, 15, 20, 30, 45, (60, 120) min. (typical)				
Units (individual)	12 for "official" studies				

Example

Ciprofloxacin: two batches of same product

Product	Manufacturer	Batch Nr	Expiry date	Status
Cipro 500	ABC Ltd	XXX	06/2007	Test
Cipro 500	ABC Ltd	ZZZ	07/2007	Reference

Apparatus paddle at 50 rpm

Medium 1: simulated gastric fluid without pepsin (SGF) (900 ml)

Medium 2: acetate buffer pH 4.5 (900 ml)

Medium 3: phosphate buffer pH 6.8 (900 ml)

Temp.: $37^{\circ}C \pm 0.5^{\circ}C$ (start, middle, end)

Units: Twelve tablets per medium, each batch

Sampling: Manual, through in-line filter (0.45 µm PVDF unit)

at 10, 15, 20, 30 and 45 minutes

Analysis: HPLC analysis for ciprofloxacin

Example .Cont....

Ciprofloxacin: two batches of same product

Medium▶	SGF, pH 1.16		Buffer pH 4.5		Buffer pH 6.8	
	% dissolved		% dissolved		% dissolved	
Time (min)	b/n xxx	b/n zzz	b/n xxx	b/n zzz	b/n xxx	b/n zzz
10	83	80	93	96	28	31
15	95	92	97	99	34	36
20	99	97	99	100	38	39
30	102	101	100	100	39	40
45	102	102	102	101	39	41
similarity?						
n = ?						

Conclusion: The profiles <u>in all three media</u> can be regarded <u>similar / not similar</u>.

Example .Cont....

Ciprofloxacin: two batches of same product

SGF without pepsin, pH 1.16

Acetate buffer pH 4.5

Example .Cont....

Ciprofloxacin: two batches of same product

Phosphate buffer pH 6.8

