Electron Transport Chain ETC

ETC !!!

Intermembrane space

Most of the ATP generated during the aerobic catabolism of glucose is not generated directly from Glycolysis and TCA pathways. Rather, it is **derived from a process that**

electron transporters that undergo redox reactions: the electron transport chain. This causes hydrogen ions to accumulate...

ELECTRON TRANSPORT CHAIN

ETC is a transfer of electrons from electron donors (NADH, FADH2) to electron acceptors (O2) via *redox* reactions and through multiple carriers. The electron transfer is coupled with the transfer of protons (H⁺ ions) across a m.membrane. This creates a proton gradient that drives the synthesis of adenosine triphosphate (ATP).

The final acceptor of electrons in the ETC during aerobic respiration is molecular oxygen

ATP accounting so far...

- Glycolysis $2 \rightarrow ATP$
- Kreb's cycle $2 \rightarrow ATP$
- Life takes a lot of energy to run, need to extract more energy than 4 ATP!

There's got to be a better way!

Mitochondria

- Double membrane
 - outer membrane
 - inner membrane
 - highly folded <u>cristae</u>
 - enzymes & transport proteins
 - intermembrane space
 - fluid-filled space
 between membranes

Electrons flow downhill

 Electrons move in steps from carrier to carrier downhill to O₂

Electron Transport Chain

What powers the proton (H+) pumps?...

Components of ETC

Cor	nplex		Name	No. of Protein		Prosthetic Groups	
				3			
Complex I		NADH Dehydrogenase NADH-Coenzyme Q Reductase		46	,FININ .Fe-S cntrs		
Complex II		Succinate-CoQ Reductase		5	-eF , ₅₆₀ FAD, cyt b .srtnc S		
Complex III		Cyt c Reductase		11	cyt b _H , cyt b _L , _{ekseiR} S-eF , ₁ cyt c		
Complex IV		Cytochrome c Oxidase		13	,₃cyt a, cyt a _B uC , _A uC		

Composition of the Electron Transport Chain Four large protein complexes.

- Complex I NADH-Coenzyme Q reductase
- Complex II Succinate-Coenzyme Q reductase
- Complex III Cytochrome c reductase
- Complex IV Cytochrome c oxidase.

<u>Cytochromes</u> : Electron-transfer proteins that contain a heme prosthetic group

Co enzyme Q (ubiquinone)

- It is a benzoquinone linked to a number of isoprene units.
- Coenzyme Q (CoQ, Q, Ubiquione) is very hydrophobic. It dissolves in the hydrocarbon core of a membrane.

Figure 2. Mitochondrial Electron Transport Chain

Coenzyme Q_{10} is a lipid-soluble component of the mitochondrial inner membrane that is critical to electron transport (in red) in the mitochondrial respiratory chain. Coenzyme Q_{10} carries electrons from complexes I and II to complex III, thus participating in ATP production. *C*, cytochrome *C*; *e*-, electron; *H*⁺, proton; *Q*, coenzyme Q_{10} .

Complex I(NADH Dehydrogenase)

Complex I: catalyzes oxidation of NADH, with reduction of coenzyme Q.

$NADH + H+ + Q \longrightarrow NAD+ + QH2$

- Coenzyme Q accepts 2 e- and picks up 2 H+ to yield the fully reduced **QH2**
- Complex I includes at least 46 proteins...
- Pumps 4 protons across the mitochondrial membrane Electrons pass from
- NADH → FMN → FeS cluster → ubiquinone (flavin mononucleotide) (Coenzyme Q)

Complex II(succinate dehydrogenase)

Succinate Dehydrogenase of the Krebs Cycle is also called complex II or Succinate-CoQ Reductase

FAD is the initial e-acceptor

•FAD is reduced to FADH₂ during oxidation of succinate to fumarate.

•FADH₂ is then reoxidized by transfer of electrons through a series of 3 iron-sulfur centers to CoQ, yielding QH₂.

It does not pump any proton during transport of electron across the inner mitochondrial membrane

• Complex III cytochromes b, c 1 and c) Cytochrome c reductase

Electron transfer from ubiquinol to cytochrome c.

Complex IV Cytochrome c oxidase

•Combination of cytochromes a and a10 _{,3}protein subunits. It catalyses the transfer of electrons from cyt c to molecular oxygen.

•Electrons are delivered from cytochromes a and a3 to O2 e-transfer: cyt c \rightarrow Cu_A \rightarrow cyt a \rightarrow heme a₃/Cu_B \rightarrow O2

"proton-motive" force

- Set up a H⁺ gradient
- Allow the protons to flow through ATP synthase
- Synthesizes ATP
- $ADP + P_i \rightarrow ATP$

Source	Carbon Flow	Molecules of Reduced Coenzymes Produced	Net ATP Molecules Made by Substrate- Level Phosphory- lation	Net ATP Molecules Made by Oxidative Phosphory- lation	Theoretical Maximum Yield of ATP Molecules
Glycolysis (EMP)	Glucose (6C) —► 2 pyruvates (2C)	2 NADH	2 ATP	6 ATP from 2 NADH	8
Transition reaction	2 pyruvates (3C) \longrightarrow 2 acetyl (2C) + 2 CO ₂	2 NADH		6 ATP from 2 NADH	6
Krebs cycle	2 acetyl (2C) —► 4 CO ₂	6 NADH 2 FADH ₂	2 ATP	18 ATP from 6 NADH 4 ATP from 2 FADH ₂	24
Total:	glucose (6C) —► 6 CO ₂	10 NADH 2 FADH ₂	4 ATP	34 ATP	38 ATP